已知数列{an},a1=3/5 ,a2=31/100,且数列{an+1-1/10an}是公比为1/2的等比数列,数列{lg(an+1-1/2an)是
1个回答
展开全部
解:
∵{a(n+1)-[an/10]}是公比为1/2的等比数列bn
∴b1=a2-[a1/10]=(31/100)-(3/50)=1/4
bn=(1/4)×(1/2)^(n-1)=(1/2)^(n+1)
bn=a(n+1)-(an/10)=(1/2)^(n+1)
∴a(n+1)-(an/10)=(1/2)^(n+1)........(1)
数列Cn={lg(a(n+1)-an/2)}是公差为-1的等差数列
C1=lg[(a2)-(a1/2)]
=lg(1/100)=-2
d=-1
Cn=-2+(n-1)×(-1)=-n-1=lg[a(n+1)-an/2]
∴(1/10)^(n+1)=a(n+1)-(an/2)........(2)
(1)-(2):
(4/10)an=(1/2)^(n+1)-(1/10)^(n+1)
an=(5/2)[(1/2)^(n+1)-(1/10)^(n+1)]
∵{a(n+1)-[an/10]}是公比为1/2的等比数列bn
∴b1=a2-[a1/10]=(31/100)-(3/50)=1/4
bn=(1/4)×(1/2)^(n-1)=(1/2)^(n+1)
bn=a(n+1)-(an/10)=(1/2)^(n+1)
∴a(n+1)-(an/10)=(1/2)^(n+1)........(1)
数列Cn={lg(a(n+1)-an/2)}是公差为-1的等差数列
C1=lg[(a2)-(a1/2)]
=lg(1/100)=-2
d=-1
Cn=-2+(n-1)×(-1)=-n-1=lg[a(n+1)-an/2]
∴(1/10)^(n+1)=a(n+1)-(an/2)........(2)
(1)-(2):
(4/10)an=(1/2)^(n+1)-(1/10)^(n+1)
an=(5/2)[(1/2)^(n+1)-(1/10)^(n+1)]
参考资料: http://iask.sina.com.cn/b/11976781.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询