如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F。 (1)求证:AF=BF+EF。
http://zhidao.baidu.com/question/261899152.html这里有图看了好多,但好像不标准,“∠EDA=∠FAB∠EAD=∠FBA”题目...
http://zhidao.baidu.com/question/261899152.html 这里有图
看了好多,但好像不标准,
“∠EDA=∠FAB
∠EAD=∠FBA ”
题目里根本没有这个条件,哪来的?
满意会有悬赏..... 展开
看了好多,但好像不标准,
“∠EDA=∠FAB
∠EAD=∠FBA ”
题目里根本没有这个条件,哪来的?
满意会有悬赏..... 展开
3个回答
展开全部
)证明:∵ABCD是正方形,
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中, ∠AFB=∠AED ∠ADE=∠BAF AD=AB ,
∴△ABF≌△DAE(AAS).
∴BF=AE.
∵AF=AE+EF,
∴AF-BF=EF. (2)EF = 2FG 理由如下:
∵ AB⊥BC , BF⊥AG , AB =2 BG
∴ △AFB ∽△BFG ∽△ABG
∴ BA/BF=AF/BF=BF/GF=2
∴ AF = 2BF , BF = 2 FG
由(1)知, AE = BF,∴ EF = BF = 2 FG
(3) 如图
DE + BF = EF
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中, ∠AFB=∠AED ∠ADE=∠BAF AD=AB ,
∴△ABF≌△DAE(AAS).
∴BF=AE.
∵AF=AE+EF,
∴AF-BF=EF. (2)EF = 2FG 理由如下:
∵ AB⊥BC , BF⊥AG , AB =2 BG
∴ △AFB ∽△BFG ∽△ABG
∴ BA/BF=AF/BF=BF/GF=2
∴ AF = 2BF , BF = 2 FG
由(1)知, AE = BF,∴ EF = BF = 2 FG
(3) 如图
DE + BF = EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询