初中数学课本内容
展开全部
代数部分:
1、有理数、无理数、实数
2、整式、分式、二次根式
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式
4、函数(一次函数、二次函数、反比例函数)
5、统计初步
几何部分
1、线段、角
2、相交线、平行线
3、三角形
4、四边形
5、相似形
6、圆
基本的几何来、函数知识、自统计与概率的基本知识,常用的逻辑推理方法。
具体内容来说,
几何有:基本的几何图形及其性质、三角形、四边形及特殊四边形的性质与判定方法、圆、解直角三角形;
代数有:实数的相关概念及运算、代数式的运算、方程(组)、不等式(组)、函数;
另外还有:统计的基础知识、简单的概率计算。
数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?
1,听课
对于新的知识,一般都是在课堂上通过老师的讲述来了解的所以需要注重学习的效率,找打正确的方式,上课需要更随老师的讲课步骤,积极的了解老师所讲述的知识,需要发现自己解决问题的思路与老师有什么不同,发现之后需要及时的改善,并且在下课之后需要及时的进行复习,这样可以不留下任何的难点,在做作业的时候需要将老师所说的内容完全在脑海当中思索一边,需要正确的认识各种数学的计算方式,对于某种问题不懂的时候,需要冷静下来,然后进行全面的分析,一般情况之下是都可以回答出来的的,这就是怎样学好初中数学的第一步.
2,多练
想要学好数学,就需要多多的做一些练习题,完全明白各种问题的解决方式,需要从简单的题目开始,一般以书籍内容为正确的答案,进行反复的练习,空闲的时候可以做一些课外的题目,帮助提升自己的思路,可以准备一侧错题本,将所写过的错题记录下来,在回答问题的时候需要将精神集中起来,进入最好的状态,可以在考试当中超强的发挥,这就是怎样学好初中数学的第二部.
3,心态
对于考试来说,心态是非常重要要的,需要在考试之前全面的调整自己的状态以及心理的状态,让自己保持冷静的态度,改善自身混乱的情绪,在考试之前可以做一些练习题,将自己的状态调整到最佳,在考试之前需要进行复习,并且有空闲时间的话可以将自己错题本浏览一遍,以便于不会再错第二次,复习需要全面的进行,这就是怎样学好初中数学的第三部.
1、有理数、无理数、实数
2、整式、分式、二次根式
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式
4、函数(一次函数、二次函数、反比例函数)
5、统计初步
几何部分
1、线段、角
2、相交线、平行线
3、三角形
4、四边形
5、相似形
6、圆
基本的几何来、函数知识、自统计与概率的基本知识,常用的逻辑推理方法。
具体内容来说,
几何有:基本的几何图形及其性质、三角形、四边形及特殊四边形的性质与判定方法、圆、解直角三角形;
代数有:实数的相关概念及运算、代数式的运算、方程(组)、不等式(组)、函数;
另外还有:统计的基础知识、简单的概率计算。
数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?
1,听课
对于新的知识,一般都是在课堂上通过老师的讲述来了解的所以需要注重学习的效率,找打正确的方式,上课需要更随老师的讲课步骤,积极的了解老师所讲述的知识,需要发现自己解决问题的思路与老师有什么不同,发现之后需要及时的改善,并且在下课之后需要及时的进行复习,这样可以不留下任何的难点,在做作业的时候需要将老师所说的内容完全在脑海当中思索一边,需要正确的认识各种数学的计算方式,对于某种问题不懂的时候,需要冷静下来,然后进行全面的分析,一般情况之下是都可以回答出来的的,这就是怎样学好初中数学的第一步.
2,多练
想要学好数学,就需要多多的做一些练习题,完全明白各种问题的解决方式,需要从简单的题目开始,一般以书籍内容为正确的答案,进行反复的练习,空闲的时候可以做一些课外的题目,帮助提升自己的思路,可以准备一侧错题本,将所写过的错题记录下来,在回答问题的时候需要将精神集中起来,进入最好的状态,可以在考试当中超强的发挥,这就是怎样学好初中数学的第二部.
3,心态
对于考试来说,心态是非常重要要的,需要在考试之前全面的调整自己的状态以及心理的状态,让自己保持冷静的态度,改善自身混乱的情绪,在考试之前可以做一些练习题,将自己的状态调整到最佳,在考试之前需要进行复习,并且有空闲时间的话可以将自己错题本浏览一遍,以便于不会再错第二次,复习需要全面的进行,这就是怎样学好初中数学的第三部.
展开全部
初中数学的基本内容,涉及全部五个学习系列。
“数与运算”系列中,以数的扩充为线索,建立从自然数、有理数到实数的数系基本结构。内容要求包括:引进无理数,形成实数概念;建立数系结构,主要是顺序结构(大小比较)和运算结构(基本运算法则、性质、顺序)。
“方程与代数”系列中,以方程研究为中心,构建初等代数的基础。内容要求包括:代数式是根基,方程为中心,不等式讲初步;突出数学思想方法,如化归思想以及换元、消元、配方、降次等方法。在整体安排上,一是提供如数系通性、等式性质等基本依据,如代数式及其运算等变形基础;二是系统研究基本的初等代数方程,形成关于初等代数方程的基本理论(主要指各类代数方程的基本解法以及解的存在性、个数、分布,还有方程的通解等)。
“图形与几何”系列中,以研究图形性质为载体,形成初等几何的基础。内容要求包括:体现经验几何是起点,注重直观感知;实验几何是基础,注重合情推理如类比、归纳以及操作说理;论证几何是重点,注重演绎推理。着重研究基本图形,如简单的直线型,圆;重视研究方法的运用,如直观经验、操作实验、演绎推理、定量分析、特殊与一般的相互转换、逆向思考等。
“函数与分析”系列中,以形成函数概念和直观研究简单初等函数为基本任务,进行数学分析的奠基。内容要求包括:从具体到抽象建立函数概念,利用图像直观认识函数性质,进入分析初步;在一次函数、二次函数和反比例函数等基本函数研究中,展示初等的分析方法。
“数据处理与概率统计”系列中,以体验概率与统计的基本思想方法为重点,引进概率与统计的初步知识。内容要求包括:完善数据处理的基本方法,建立初步的概率与统计知识基础;解释和解决现实生活中一些简单的概率统计问题。
“数与运算”系列中,以数的扩充为线索,建立从自然数、有理数到实数的数系基本结构。内容要求包括:引进无理数,形成实数概念;建立数系结构,主要是顺序结构(大小比较)和运算结构(基本运算法则、性质、顺序)。
“方程与代数”系列中,以方程研究为中心,构建初等代数的基础。内容要求包括:代数式是根基,方程为中心,不等式讲初步;突出数学思想方法,如化归思想以及换元、消元、配方、降次等方法。在整体安排上,一是提供如数系通性、等式性质等基本依据,如代数式及其运算等变形基础;二是系统研究基本的初等代数方程,形成关于初等代数方程的基本理论(主要指各类代数方程的基本解法以及解的存在性、个数、分布,还有方程的通解等)。
“图形与几何”系列中,以研究图形性质为载体,形成初等几何的基础。内容要求包括:体现经验几何是起点,注重直观感知;实验几何是基础,注重合情推理如类比、归纳以及操作说理;论证几何是重点,注重演绎推理。着重研究基本图形,如简单的直线型,圆;重视研究方法的运用,如直观经验、操作实验、演绎推理、定量分析、特殊与一般的相互转换、逆向思考等。
“函数与分析”系列中,以形成函数概念和直观研究简单初等函数为基本任务,进行数学分析的奠基。内容要求包括:从具体到抽象建立函数概念,利用图像直观认识函数性质,进入分析初步;在一次函数、二次函数和反比例函数等基本函数研究中,展示初等的分析方法。
“数据处理与概率统计”系列中,以体验概率与统计的基本思想方法为重点,引进概率与统计的初步知识。内容要求包括:完善数据处理的基本方法,建立初步的概率与统计知识基础;解释和解决现实生活中一些简单的概率统计问题。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询