如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG,
3个回答
展开全部
解:(1)∵四边形ABCD和四边形AEFG是正方形
∴AB=AD,AE=AG,∠BAD=∠EAG=90º
∴∠BAE+∠EAD=∠DAG+∠EAD
∴∠BAE=∠DAG
∴△ BAE≌△DAG
(2)∠FCN=45º
理由是:作FH⊥MN于H
∵∠AEF=∠ABE=90º
∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º
∴∠FEH=∠BAE
又∵AE=EF,∠EHF=∠EBA=90º
∴△EFH≌△ABE
∴FH=BE,EH=AB=BC,∴CH=BE=FH
∵∠FHC=90º,∴∠FCH=45º
(3)当点E由B向C运动时,∠FCN的大小总保持不变,
理由是:作FH⊥MN于H
由已知可得∠EAG=∠BAD=∠AEF=90º
结合(1)(2)得∠FEH=∠BAE=∠DAG
又∵G在射线CD上
∠GDA=∠EHF=∠EBA=90º
∴△EFH≌△GAD,△EFH∽△ABE
∴EH=AD=BC=b,∴CH=BE,
∴EH/AB=FH/BE=FH/CH
∴在Rt△FEH中,tan∠FCN=FH/CH=EH/AB=b/a
∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=b/a
∴AB=AD,AE=AG,∠BAD=∠EAG=90º
∴∠BAE+∠EAD=∠DAG+∠EAD
∴∠BAE=∠DAG
∴△ BAE≌△DAG
(2)∠FCN=45º
理由是:作FH⊥MN于H
∵∠AEF=∠ABE=90º
∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º
∴∠FEH=∠BAE
又∵AE=EF,∠EHF=∠EBA=90º
∴△EFH≌△ABE
∴FH=BE,EH=AB=BC,∴CH=BE=FH
∵∠FHC=90º,∴∠FCH=45º
(3)当点E由B向C运动时,∠FCN的大小总保持不变,
理由是:作FH⊥MN于H
由已知可得∠EAG=∠BAD=∠AEF=90º
结合(1)(2)得∠FEH=∠BAE=∠DAG
又∵G在射线CD上
∠GDA=∠EHF=∠EBA=90º
∴△EFH≌△GAD,△EFH∽△ABE
∴EH=AD=BC=b,∴CH=BE,
∴EH/AB=FH/BE=FH/CH
∴在Rt△FEH中,tan∠FCN=FH/CH=EH/AB=b/a
∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=b/a
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询