高数的曲面积分问题?

图中划线的r=acosθ的几何意义是什么,是原点到下方投影圆上的距离吗... 图中划线的r=acosθ的几何意义是什么,是原点到下方投影圆上的距离吗 展开
 我来答
zzllrr小乐
高粉答主

2020-12-29 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78778

向TA提问 私信TA
展开全部

第1题,是第二类曲面积分,曲面是抛物面,在各个坐标面上投影,分别是

两个类似的抛物线与水平线围成的平面、一个圆,

分别计算这些投影面上的平面积分,最终相加即可。


当然,还有第二种方法,就是利用高斯公式:

将原来的曲面积分,补充一个圆形平面(圆心在(0,2,0),半径为1)积分,得到闭曲面积分,从而可以化成三重积分,

正好得到抛物体体积。

也即最终等于抛物体体积减去一个圆形平面(与xoz平面平行,即抛物体的底面,此时满足dy=0, y=2)的积分(也即∫∫(-6)dxdz = 6圆面积 =6π),



第2题

曲线L,是一个以原点(也是半径为a的球体球心)为圆心的圆形平面的边界,可以应用Stokes公式,将闭曲线积分,转换成曲面积分

P=y-4

Q=z+3

R=x+1

求各个偏导之后,正好得到曲面面积,即圆面积πa^2

arongustc
科技发烧友

2020-12-28 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5886万
展开全部
它不一定有特别几何意义的,它只是说了rou随theta的变化的函数关系而已
更多追问追答
追问
这个r是原点到下方投影圆上的距离吗
追答
肯定不是,球/极坐标中rou代表的事曲面上的点到“原点”的距离
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式