y=1+xe∧y.求这个隐函数y的二阶导数.
1个回答
展开全部
y=1+xe^y方程两边求导
y'=e^y+xe^y*y'
y'(1-xe^y)=e^y
y'=(e^y)/(1-xe^y)
y''={e^y*y'*(1-xe^y)+e^y[e^y+xe^y*y']}/(1-xe^y)^2
=[e^(2y)*(2+x-xe^y)]/[(1-xe^y)^3]
y'=e^y+xe^y*y'
y'(1-xe^y)=e^y
y'=(e^y)/(1-xe^y)
y''={e^y*y'*(1-xe^y)+e^y[e^y+xe^y*y']}/(1-xe^y)^2
=[e^(2y)*(2+x-xe^y)]/[(1-xe^y)^3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询