
已知向量a=(sina,1)b=(1,cosa),-π/2<a<π/2,求|a+b|的最大值
1个回答
展开全部
|a+b|^2=a^2 +b^2 +2ab
=(sin^2a +1) +(1+cos^2a) +2*(sina+cosa)
=2+2(sina+cosa)
=2+2根号2 * sin(a+π/4)
-π/2<a<π/2
-π/4 <a+ π/4< 3π/4
sin(a+π/4) 的最大值是1,
所以函数的最大值是:2+2根号2
=(sin^2a +1) +(1+cos^2a) +2*(sina+cosa)
=2+2(sina+cosa)
=2+2根号2 * sin(a+π/4)
-π/2<a<π/2
-π/4 <a+ π/4< 3π/4
sin(a+π/4) 的最大值是1,
所以函数的最大值是:2+2根号2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询