2个回答
展开全部
a(n+1)=f[a(n)]=2a(n)/[a(n)+3],
1/a(n+1)=(1/2)[a(n)+3]/a(n) = (3/2)/a(n) + 1/2
1/a(n+1) + 1 = (3/2)[1/a(n) + 1],
{1/a(n)+1}是首项为1/a(1)+1 = 3,公比为(3/2)的等比数列.
1/a(n) + 1 = 3*(3/2)^(n-1),
1/a(n) = 3*(3/2)^(n-1) - 1.
a(n) = 1/[3*(3/2)^(n-1) - 1] = 2^(n-1)/[3^n - 2^(n-1)]
1/a(n+1)=(1/2)[a(n)+3]/a(n) = (3/2)/a(n) + 1/2
1/a(n+1) + 1 = (3/2)[1/a(n) + 1],
{1/a(n)+1}是首项为1/a(1)+1 = 3,公比为(3/2)的等比数列.
1/a(n) + 1 = 3*(3/2)^(n-1),
1/a(n) = 3*(3/2)^(n-1) - 1.
a(n) = 1/[3*(3/2)^(n-1) - 1] = 2^(n-1)/[3^n - 2^(n-1)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询