函数y=Asin(ωx+φ)的图像如图所示,其中A>0,ω>0,0
展开全部
1) y最大值为2,最小值为-2,所以|A|=2
由于A>0,所以A=2
函数的周期为8π/3-(-4π/3)=4π,所以2π/|ω|=4π,|ω|=1/2
由于ω>0,所以ω=1/2
则函数为y=2sin(x/2+φ),过点(8π/3,0)
所以2sin(8π/3/2+φ)=0,解得φ=kπ-4π/3,k∈Z
由于0<φ<π,即0<kπ-4π 3<br="" 3<k<7="" 3 整数k只能取2,则φ=2π-4π/3=2π/3
A=2,ω=1/2,φ=2π/3
所以函数解析式为y=2sin(x/2+2π/3)
2) sinα的单调增区间是α∈[-π/2+2kπ,π/2+2kπ],k∈Z
则y=2sin(x/2+2π/3)的单调增区间为x/2+2π/3∈[-π/2+2kπ,π/2+2kπ],k∈Z
即x/2∈[-π/2+2kπ-2π/3,π/2+2kπ-2π/3],k∈Z
所以x/2∈[-7π/6+2kπ,-π/6+2kπ],k∈Z
即x∈[2*(-7π/6+2kπ),2*(-π/6+2kπ)],k∈Z
即x∈[-7π/3+4kπ,-π/3+4kπ],k∈Z
所以函数的单调增区间是x∈[-7π/3+4kπ,-π/3+4kπ],k∈Z
由于A>0,所以A=2
函数的周期为8π/3-(-4π/3)=4π,所以2π/|ω|=4π,|ω|=1/2
由于ω>0,所以ω=1/2
则函数为y=2sin(x/2+φ),过点(8π/3,0)
所以2sin(8π/3/2+φ)=0,解得φ=kπ-4π/3,k∈Z
由于0<φ<π,即0<kπ-4π 3<br="" 3<k<7="" 3 整数k只能取2,则φ=2π-4π/3=2π/3
A=2,ω=1/2,φ=2π/3
所以函数解析式为y=2sin(x/2+2π/3)
2) sinα的单调增区间是α∈[-π/2+2kπ,π/2+2kπ],k∈Z
则y=2sin(x/2+2π/3)的单调增区间为x/2+2π/3∈[-π/2+2kπ,π/2+2kπ],k∈Z
即x/2∈[-π/2+2kπ-2π/3,π/2+2kπ-2π/3],k∈Z
所以x/2∈[-7π/6+2kπ,-π/6+2kπ],k∈Z
即x∈[2*(-7π/6+2kπ),2*(-π/6+2kπ)],k∈Z
即x∈[-7π/3+4kπ,-π/3+4kπ],k∈Z
所以函数的单调增区间是x∈[-7π/3+4kπ,-π/3+4kπ],k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
火丰科技
2024-11-13 广告
2024-11-13 广告
致力于从事惯性测量、卫星导航等产品的研发、生产的高新技术企业。公司旗下投资多条自动化生产线分别分布于西安、深圳、珠海等地,其中包括光纤陀螺、MEMS惯导、石英加速度计、电子对抗通信产品生产线,拥有中国先进的惯性导航产品及电子对抗产品生产条件...
点击进入详情页
本回答由火丰科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询