已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)x...
已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值....
已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求: (1)xyz的值; (2)x4+y4+z4的值.
展开
1个回答
展开全部
解:(1)由条件可得
(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=1,
即
1=2+2(xy+yz+xz),∴xy+yz+xz=-
1
2
.
再根据
x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),
即3-3xyz=2+
1
2
,∴xyz=
1
6
.
(2)由题意可得
(x2+y2+z2)2=x4+y4+z4+2x2•y2+2y2•z2+2x2•z2=4,
∴x4+y4+z4
=4-2(x2•y2+y2•z2+x2•z2
).
由于(x2•y2+y2•z2+x2•z2
)=(xy+yz+xz)2-2xyz(x+y+z)=(-
1
2
)2-2×
1
6
×1=-
1
12
,
∴x4+y4+z4
=4-2×(-
1
12
)=
25
6
.
(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=1,
即
1=2+2(xy+yz+xz),∴xy+yz+xz=-
1
2
.
再根据
x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),
即3-3xyz=2+
1
2
,∴xyz=
1
6
.
(2)由题意可得
(x2+y2+z2)2=x4+y4+z4+2x2•y2+2y2•z2+2x2•z2=4,
∴x4+y4+z4
=4-2(x2•y2+y2•z2+x2•z2
).
由于(x2•y2+y2•z2+x2•z2
)=(xy+yz+xz)2-2xyz(x+y+z)=(-
1
2
)2-2×
1
6
×1=-
1
12
,
∴x4+y4+z4
=4-2×(-
1
12
)=
25
6
.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询