高考数学题形~~~~数列!

请详细讲解一下:裂项法求和,倒序相加法求和,错位相减法求和,还有关于数列通向公式的求法!什么样的题型用什么样的公式~?做题的大致步骤(也就是基本思路)是怎么样的?最好能用... 请详细讲解一下:裂项法求和,倒序相加法求和,错位相减法求和,还有关于数列通向公式的求法!
什么样的题型用什么样的公式~?做题的大致步骤(也就是基本思路)是怎么样的?
最好能用一两道例题讲解~~~谢谢~~~
还有,请不要粘一大段文章~
chrysalis110
我不是不做题!每次作出来一道数列题要花很长的时间..别人做3道!我才能做一道(还不一定对--!).所以我想让大家帮帮我怎样类型的题用怎样的方法~~~~
还有~为什么那么多人喜欢复制别人的答案勒?!
展开
 我来答
帐号已注销
2022-06-03 · TA获得超过1038个赞
知道小有建树答主
回答量:1.9万
采纳率:77%
帮助的人:514万
展开全部

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

堕落公子_1993
2007-05-26 · 贡献了超过212个回答
知道答主
回答量:212
采纳率:0%
帮助的人:0
展开全部
buhui
回答者:新的生命1984 - 试用期 一级 5-25 19:11

数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”

参考资料:http://zhidao.baidu.com/question/14948210.html?fr=qrl3
回答者:奚玥 - 初入江湖 二级 5-25 19:35

裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
回答者:╠★远方★╣ - 江湖新秀 四级 5-25 19:44

数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.” 裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
回答者:ian94 - 试用期 一级 5-25 19:47

数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”

参考资料:http://zhidao.baidu.com/question/14948210.html?fr=qrl3
回答者:奚玥 - 初入江湖 二级 5-25 19:35

裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
回答者:╠★远方★╣ - 江湖新秀 四级 5-25 19:44

数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.” 裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
回答者:xiaolin_huiwen - 试用期 一级 5-25 19:57

你太搞笑了 只有每类 做10道题后 才有会的感觉 一味贪图省事 没用
回答者:chrysalis110 - 见习魔法师 二级 5-25 23:07

老师教了你,自己都整理得出来
回答者:sincor - 助理 二级 5-26 00:32

无聊
回答者:匿名 5-26 07:54

你不做题是没用的 我开始也不会 后来让一个美女教我 然后就会了…… 自己多想想 我觉得你应该OK的 加油吧!~
回答者:5618215 - 助理 二级 5-26 11:14

作题慢,也许是你基础知识不牢固,对基本的公式理解不够,你应该先看课本把课本上的理解好,在作适量的题目,这样会好些!
俗话说:磨刀不误砍柴工!
每年高考时,都会考数列这部分知识,应该把握好,应该是中等难度的!!
倒序相加和错位相减,课本上都有,仔细看看。
对于列项求和:1/1*2+1/2*3+......1/n(n+1)=1-1/2+1/2-1/3+......1/n-1/n+1=1-1/n+1 这是基本思路。
在数列这部分还用到等差,等比数列。相应的公式也要理解。
回答者:北斗321 - 试用期 一级 5-26 11:59

每年高考时,都会考数列这部分知识,中等难度的!! 一般是由数列{An}到数列{Bn},只要基础知识牢固,基本的公式理解好,就可以了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
熊用Fd
2007-05-25 · TA获得超过270个赞
知道答主
回答量:25
采纳率:0%
帮助的人:0
展开全部
数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”

参考资料: http://zhidao.baidu.com/question/14948210.html?fr=qrl3

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xiaolin_huiwen
2007-05-25
知道答主
回答量:18
采纳率:0%
帮助的人:0
展开全部
数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”

参考资料:http://zhidao.baidu.com/question/14948210.html?fr=qrl3
回答者:奚玥 - 初入江湖 二级 5-25 19:35

裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
回答者:╠★远方★╣ - 江湖新秀 四级 5-25 19:44

数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.” 裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ian94
2007-05-25
知道答主
回答量:71
采纳率:0%
帮助的人:0
展开全部
数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.” 裂项法求和
例题
1/1*4+1/4*7+1/7*10.........1/(3n-2)(3n+1)
怎么解这种不是n(n+1)的裂项法阿?
解答
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式