展开全部
设v、w是两个线性空间。一个v至w的线性映射T,就称为v至w的线性变换。
线性变换必须满足任意的x,y∈v 及任意实数a,b,有 T(ax+by)=aT(x)+bT(y)
如恒等变换 I 。v→v,对任意的x∈v,有 I(x)=x
因为 I(ax+by)=ax+by= a I(x)+b I(y) 满足 T(ax+by)=aT(x)+bT(y)所以 I 是线性变换。
几何上恒等变换不改变图形的大小和位置。其在常用基下对应的矩阵为单位矩阵E。
是不是线性变换就通过看是否满足T(ax+by)=aT(x)+bT(y)来验证。
同理 旋转变换、伸缩变换(几何上表现为扩大缩小图形 X=kx;Y=ky)、切变变换(几何上表现为X=x+ky;Y=y+kx)、投影变换(投影在x或y轴上)、反射变换(几何上表现为关于某条直线对称)、零变换(O)等都是线性变换。
若一个变换是由几个线性变换复合而成,该变换也为线性变换。
学到后面基本都是考线性变换对应的矩阵的相关计算及应用。
线性变换必须满足任意的x,y∈v 及任意实数a,b,有 T(ax+by)=aT(x)+bT(y)
如恒等变换 I 。v→v,对任意的x∈v,有 I(x)=x
因为 I(ax+by)=ax+by= a I(x)+b I(y) 满足 T(ax+by)=aT(x)+bT(y)所以 I 是线性变换。
几何上恒等变换不改变图形的大小和位置。其在常用基下对应的矩阵为单位矩阵E。
是不是线性变换就通过看是否满足T(ax+by)=aT(x)+bT(y)来验证。
同理 旋转变换、伸缩变换(几何上表现为扩大缩小图形 X=kx;Y=ky)、切变变换(几何上表现为X=x+ky;Y=y+kx)、投影变换(投影在x或y轴上)、反射变换(几何上表现为关于某条直线对称)、零变换(O)等都是线性变换。
若一个变换是由几个线性变换复合而成,该变换也为线性变换。
学到后面基本都是考线性变换对应的矩阵的相关计算及应用。
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询