莱布尼茨公式是什么?

 我来答
帐号已注销
2021-02-25 · TA获得超过25.9万个赞
知道小有建树答主
回答量:2206
采纳率:96%
帮助的人:81.1万
展开全部

莱布尼茨法则,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。

一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有:

牛顿-莱布尼茨公式是微积分学中的一个重要公式,它把不定积分与定积分相联系了起来,也让定积分的运算有了一个完善、令人满意的方法。

扩展资料

推导过程:

如果存在函数u=u(x)与v=v(x),且它们在点x处都具有n阶导数,那么显而易见的,

u(x) ± v(x) 在x处也具有n阶导数,且 (u±v)(n)= u(n)± v(n)

至于u(x) × v(x) 的n阶导数则较为复杂,按照基本求导法则和公式,可以得到:

(uv)' = u'v + uv'

(uv)'' = u''v + 2u'v' + uv''

(uv)''' = u'''v + 3u''v' + 3u'v'' + uv'''

…………

最后由科学归纳法可得:

参考资料来源:百度百科—莱布尼茨公式

轻轻路过的酱油0t
高能答主

2022-03-09 · 有什么不懂的尽管问我
知道大有可为答主
回答量:4163
采纳率:100%
帮助的人:106万
展开全部

莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。

一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有

莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。

拓展资料:

微积分的创立者是牛顿和莱布尼茨,之所以说牛顿和莱布尼茨的创立者,事实上是因为他们把定积分与不定积分联系起来,从而建立了微分和积分相互联系的桥梁。

牛顿莱布尼茨公式,经常也被称为“微积分学基本定理”。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
林凡若云

2022-03-04 · TA获得超过11.3万个赞
知道大有可为答主
回答量:1.9万
采纳率:95%
帮助的人:1204万
展开全部

莱布尼茨法则,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。

莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。

一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有

莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。

拓展资料:

微积分的创立者是牛顿和莱布尼茨,之所以说牛顿和莱布尼茨的创立者,事实上是因为他们把定积分与不定积分联系起来,从而建立了微分和积分相互联系的桥梁。

牛顿莱布尼茨公式,经常也被称为“微积分学基本定理”。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梅圳池夕0C
高能答主

2022-03-10 · 把复杂的事情简单说给你听
知道小有建树答主
回答量:2769
采纳率:46%
帮助的人:104万
展开全部
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。

一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有

莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。

拓展资料:
微积分的创立者是牛顿和莱布尼茨,之所以说牛顿和莱布尼茨的创立者,事实上是因为他们把定积分与不定积分联系起来,从而建立了微分和积分相互联系的桥梁。

牛顿莱布尼茨公式,经常也被称为“微积分学基本定理”。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
郭老大KU
高能答主

2022-03-16 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:742
采纳率:100%
帮助的人:19.4万
展开全部
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。

一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有

莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式