均值不等式公式是哪四个?

 我来答
q喜气洋洋p

2022-03-04 · 还签啥名呀
q喜气洋洋p
采纳数:22826 获赞数:45546

向TA提问 私信TA
展开全部

均值不等式公式四个及证明

均值不等式:a²+b²≥2ab;√(ab)≤(a+b)/2;a²+b²+c²≥(a+b+c)²/3;a+b+c≥3×三次根号abc。


均值不等式证明:


均值不等式是什么:

均值不等式是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)

3、算术平均数:An=(a1+a2+...+an)/n

4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n

这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。

夫越Zb

2022-03-10 · TA获得超过5430个赞
知道大有可为答主
回答量:6441
采纳率:100%
帮助的人:117万
展开全部

均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

均值不等式的公式内容为Hn≤Gn≤An≤Qn。

拓展资料:

均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。

Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。简记为“调几算方”。

调和平均数:

几何平均数:

算术平均数:

平方平均数:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
学无涯老师
高能答主

2021-02-24 · 汽车爱好者
学无涯老师
采纳数:231 获赞数:144136

向TA提问 私信TA
展开全部

均值不等式公式如下:

扩展资料

不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。

公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云剖N
2023-07-15 · TA获得超过183个赞
知道大有可为答主
回答量:3762
采纳率:0%
帮助的人:81.8万
展开全部

① 知识点定义来源与讲解:

均值不等式是数学中一组关于平均值的不等式。它描述了一组非负实数的平均值之间的大小关系。常见的均值不等式有四个,分别是算术平均-几何平均不等式、谐波平均-几何平均不等式、几何平均-算术平均不等式和平方平均根不等式。

② 知识点运用:

均值不等式在数学推理和证明中经常被使用。它们在数学分析、不等式论证、概率、统计等领域都有广泛的应用。均值不等式可以帮助比较平均值,揭示数学对象之间的相对大小关系,并在优化问题中提供一些启示。

③ 知识点例题讲解:

下面是均值不等式中的四个常见公式:

1. 算术平均-几何平均不等式(AM-GM不等式):

对于非负实数 a1, a2, ..., an,有以下不等式成立:

(a1 + a2 + ... + an)/n ≥ √(a1 * a2 * ... * an)

2. 谐波平均-几何平均不等式(HM-GM不等式):

对于正实数 a1, a2, ..., an,有以下不等式成立:

n/(1/a1 + 1/a2 + ... + 1/an) ≤ √(a1 * a2 * ... * an)

3. 几何平均-算术平均不等式(GM-AM不等式):

对于非负实数 a1, a2, ..., an,有以下不等式成立:

√(a1 * a2 * ... * an) ≤ (a1 + a2 + ... + an)/n

4. 平方平均根不等式(RMS-AM不等式):

对于非负实数 a1, a2, ..., an,有以下不等式成立:

√((a1^2 + a2^2 + ... + an^2)/n) ≥ (a1 + a2 + ... + an)/n

这些不等式是数学中非常重要的基本不等式,可用于比较各种平均值的大小关系,以及在证明其他数学不等式时的辅助工具。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
地球之宋

2022-03-14 · TA获得超过1.5万个赞
知道大有可为答主
回答量:3.2万
采纳率:97%
帮助的人:730万
展开全部
在高中数学中有四个常用的均值不等式:(1)对于两个实数a和b,a²+b²≥2ab;(2)对于两个非负数,两数之和大于等于两数积的算术平方根的2倍;(3)若a、b、c是非负数,则a³+b³+c³≥3abc;(4)若a、b、c是非负数,三数之和大于等于三数积的立方根的3倍。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式