求教道简单高数微分的题目 20
证明函数在点(0,0)处不可微函数时F(X,Y)=xy/(x^2+y^2)x^2+y^2不等于0F(X,Y)=0x^2+y^2等于0帮忙解答一下啊,谢谢啊...
证明函数在点(0,0)处不可微
函数时F(X,Y)=xy/(x^2+y^2) x^2+y^2不等于0
F(X,Y)=0 x^2+y^2等于0
帮忙解答一下啊,谢谢啊 展开
函数时F(X,Y)=xy/(x^2+y^2) x^2+y^2不等于0
F(X,Y)=0 x^2+y^2等于0
帮忙解答一下啊,谢谢啊 展开
展开全部
目前证明多元函数的可微性只能用定义证:以下(出现lim ,则△x,△y都是趋于0)
fx(0,0)=lim【f(△x,0)-f(0,0)】/△x=0
fy(0,0)=lim[f(0,△y)-f(0,0)]/△y=0
又因为△z=f(△x,△y)-f(0,0)=△x*△y/(△x^2 + △y^2)
lim{△z-[fx(0,0)△x+fy(0,0)△y]}/(△x^2+△y^2)^(1/2)=△x*△y/(△x^2 + △y^2)^(3/2)
沿y=kx方向其lim不恒等于0
故不可微。
fx(0,0)=lim【f(△x,0)-f(0,0)】/△x=0
fy(0,0)=lim[f(0,△y)-f(0,0)]/△y=0
又因为△z=f(△x,△y)-f(0,0)=△x*△y/(△x^2 + △y^2)
lim{△z-[fx(0,0)△x+fy(0,0)△y]}/(△x^2+△y^2)^(1/2)=△x*△y/(△x^2 + △y^2)^(3/2)
沿y=kx方向其lim不恒等于0
故不可微。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询