如何学好高中立体几何?
第一、要掌握基础知识和基本技能
要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。要学会用图帮助解决问题,要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。
第二、充分利用立体几何学习中的图形观
立体几何的学习离不开图形,图形是一种语言,图形能直观地感受空间线面的位置关系,培养空间想象能力。所以在立体几何的学习中,要树立图形观,通过作图、读图、用图、拼图、变图培养我们的思维能力。
基本信息
数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—-因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,改郑昌瓶盖等等。
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱核扒柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的丛芦三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2021-12-05
立体几何一直是高中数学的一大难点,在已经掌握了平面几何的基础知识后,要进一步学好立体几何的基础知识却并不容易。因为从平面观念过渡到立体观念,对一般学生来说,困难较敬卜搭多。产生困难的原因是立体几何比平面几何研究的基本对象多了个“面”,而这多出的一个“面”,使得在平面几何中点和直线之间的三种位置关系(即点与点、点与直线、直线与直线)拓展为立体几何中点、直线和平面之间的六种位置关系。
在学习立体几何的时候
我认为我们必须从以下6点入手~
1
建立空间观念
提高空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。
请点击输入图片描述
还可以通过画图帮助理解,从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。
2
掌握基础知识和基本技能
直线和平面是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。
例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。
请点击输入图片描述
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想亮拿象力。对后面的学习也打下了很好的基础。
3
积累解决问题的策略
如将立体几何问题转化为平面问题,弊嫌又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。
一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。
4
重视证明过程
各类考试中都有立体几何论证的考察,论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。
请点击输入图片描述
切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法形式写出。
5
充分运用“转化”思想
解立体几何的问题,要充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。
例如:面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。
请点击输入图片描述
同样面面垂直可以转化为线面垂直,进而转化为线线垂直。通过转化可以使问题得以大大简化。
6
平时注意规范训练
在平时要养成良好的答题习惯,按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。
答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。
请点击输入图片描述
在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
2、平常积累几种求二面角的模型很重要。简单的如、垂面、 三垂线定理、面积投影,复杂一点的如空间余弦定理。
你芦掘可以尝试一下,看一下那些立体几何看一下,他们是怎样立体的。另外,你可以自己画一些立体几何。对于你以后做弯腔题会有帮助。