数学二项式中所有项系数之和是多少?二项式系数之和为多少?

恼春意
2019-05-12 · TA获得超过1.1万个赞
知道答主
回答量:1623
采纳率:84%
帮助的人:41.6万
展开全部

二项式中所有项系数之和是按题目定的 :如(2+X)^n 所有项系数之和是每一项的二项系数乘以2^n的和,运用逐项求积法可以求得;二项式系数之和 2^n。

一般二项式(x+y)ⁿ的幂可用二项式系数记为。

广义二项式定理把这结果推广至负数或非整数次幂,此时右式则不再是多项式,而是无穷级数。

二项式系数对组合数学很重要,因它的意义是从n件物件中,不分先后地选取k件的方法总数,因此也叫做组合数。

从定义出发,把n个(1+x)项的乘积展开,其中任意k项的x和n−k项的1相乘得出一个x,故此x的系数是从n个选取k个的方法总数。

扩展资料:

二项式发现过程

二项式系数表为在我国被称为贾宪三角或杨辉三角,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》之中。在阿拉伯数学家卡西的著作《算术之钥》中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。

在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为帕斯卡三角形,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。

1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了展开式。 二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

参考资料来源:百度百科-二项式系数

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
wanzizALDX
高粉答主

2019-07-22 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1136
采纳率:100%
帮助的人:29.6万
展开全部

二项式中所有项系数之和是按题目定的 :

如(2+X)^n 所有项系数之和是每一项的二项系数乘以2^n的和,运用逐项求积法可以求得;二项式系数之和 2^n。

广义二项式定理把这结果推广至负数或非整数次幂,此时右式则不再是多项式,而是无穷级数。

二项式系数对组合数学很重要,因它的意义是从n件物件中,不分先后地选取k件的方法总数,因此也叫做组合数。

从定义出发,把n个(1+x)项的乘积展开,其中任意k项的x和n−k项的1相乘得出一个x,故此x的系数是从n个选取k个的方法总数。

扩展资料:

二项式发现过程

二项式系数表为在我国被称为贾宪三角或杨辉三角,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》之中。在阿拉伯数学家卡西的著作《算术之钥》中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。

在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为帕斯卡三角形,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。

1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了展开式。 二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小屁孩傻的
推荐于2017-11-24 · TA获得超过105个赞
知道答主
回答量:56
采纳率:0%
帮助的人:45.7万
展开全部
二项式系数之和 2^n
二项式中所有项系数之和是按题目定的
如(2+X)^n 所有项系数之和是每一项的二项系数乘以2^n的和,运用逐项求积法可以求得
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鲍墨彻贸丙
2019-05-10 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:32%
帮助的人:872万
展开全部
二项式系数之和为:C(n,0)+C(n,1)+C(n,2)+...+C(n,n-1)+C(n,n)=2^n;
二项式所有项系数之和(没有具体公式):若二项式是关于字母x的二项式,先计算出常数项,然后令x=1代入二项式的得出其值,再减去常数项就是了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liuyang4431302
2011-05-24 · 超过10用户采纳过TA的回答
知道答主
回答量:25
采纳率:0%
帮助的人:35.4万
展开全部
令x=1就是所有项系数之和
二项式系数之和2的平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式