数据挖掘常用的方法有哪些?

①分类;②聚类;③回归分析;④关联规则;⑤神经网络方法;⑥Web数据挖掘;⑦特征分析;⑧偏差分析。... ①分类;②聚类;③回归分析;④关联规则;⑤神经网络方法;⑥Web数据挖掘;⑦特征分析;⑧偏差分析。 展开
 我来答
环球青藤
2021-10-19 · 专注大学生职业技能培训在线教育品牌
环球青藤
环球青藤开设了就业、技能培训、职业资格考试、学历提升、外语培训、留学和兴趣类专业课程、为大学生提供考试/就业双重服务。
向TA提问
展开全部
1、分类

分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。


主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。


2、聚类


聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。


聚类的方法(算法):主要的聚类算法可以划分为如下几类,划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法。每一类中都存在着得到广泛应用的算法, 划分方法中有 k-means 聚类算法、层次方法中有凝聚型层次聚类算法、基于模型方法中有神经网络聚类算法。


3、回归分析


回归分析是一个统计预测模型,用以描述和评估因变量与一个或多个自变量之间的关系;反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。


回归分析的应用:回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。


回归分析的主要研究问题:数据序列的趋势特征、数据序列的预测、数据间的相关关系等。


4、关联规则


关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则是描述数据库中数据项之间所存在的关系的规则。


5、神经网络方法


神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的问题,以及那些以模糊、不完整、不严密的知识或数据为特征的问题,它的这一特点十分适合解决数据挖掘的问题。


6、Web数据挖掘


web数据挖掘是一项综合性技术,指Web从文档结构和使用的集合C中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。


7、特征分析


特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。


8、偏差分析


偏差是数据集中的小比例对象。通常,偏差对象被称为离群点、例外、野点等。偏差分析就是发现与大部分其他对象不同的对象。

壹寰(深圳)科技文化有限公司
2021-03-27 广告
要找正规专业的公司,行业口碑也比较重要。更多详尽准确的信息可以找壹寰(深圳)科技文化有限公司。91数据恢复是壹寰(深圳)科技文化有限公司旗下专业数据恢复品牌,91数据恢复专注于勒索病毒数据恢复、勒索病毒数据修复、数据库修复、数据库解密恢复、... 点击进入详情页
本回答由壹寰(深圳)科技文化有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式