已知sin(A+π/4)=7根号2/10,A属于(π/4,π/2)求cosA的值
1个回答
展开全部
sin(A+π/4)=7√2/10,A属于(π/4,π/2)
cos(A+π/4)=-√2/10
cosA=cos[(A+π/4)-π/4]
=cos(A+π/4)cosπ/4-sin(A+π/4)sinπ/4
=(-√2/10)*(√2/2)-(7√2/10)*(√2/2)
=-4/5
cos(A+π/4)=-√2/10
cosA=cos[(A+π/4)-π/4]
=cos(A+π/4)cosπ/4-sin(A+π/4)sinπ/4
=(-√2/10)*(√2/2)-(7√2/10)*(√2/2)
=-4/5
追问
你的答案肯定不对....
追答
sin(A+π/4)=7√2/10,A属于(π/4,π/2)
cos(A+π/4)=-√2/10
cosA=cos[(A+π/4)-π/4]
=cos(A+π/4)cosπ/4+sin(A+π/4)sinπ/4
=(-√2/10)*(√2/2)+(7√2/10)*(√2/2)
=3/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询