1个回答
2021-05-10 · 专注大学生职业技能培训在线教育品牌
关注
展开全部
1、监督学习模型
监督学习模型,就是人们经常说的分类,通过已经有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型,然后再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。
2、无监督学习模型
在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构,应用场景包括关联规则的学习以及聚类等。
3、半监督学习
半监督学习算法要求输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |