第十二题 多元函数求微分 详细步骤 求教 有点混乱 10
5个回答
TableDI
2024-07-18 广告
2024-07-18 广告
VLOOKUP是Excel中的常用函数,用于在表格的首列中查找值,并返回该行中指定列的值。其基本语法为:`VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])`。...
点击进入详情页
本回答由TableDI提供
展开全部
12. e^(2yz)+x+y^2+z = 7/4 ① ,
x = y = 1/2 时, e^z+z =1 , 得 z = 0。
求偏导数有两种方法:
法1:式 ① 两边对 x 求偏导, 注意 z 是 x,y 的函数,得
e^(2yz)(2y∂z/∂x)+1+∂z/∂x = 0, x = y = 1/2 , z = 0 代入,得
∂z/∂x+1+∂z/∂x = 0, ∂z/∂x = -1/2;
式 ① 两边对 y 求偏导, 得
e^(2yz)(2z+2y∂z/∂y)+2y+∂z/∂y = 0, x = y = 1/2 , z = 0 代入,得
∂z/∂y+1+∂z/∂y = 0, ∂z/∂y = -1/2;
dz = -(1/2)(dx+dy)
法2:记 F = e^(2yz)+x+y^2+z-7/4,得
Fx = 1, Fy = 2ze^(2yz)+2y, Fz = 2ye^(2yz)+1,
∂z/∂x = -Fx/Fz = -1/[2ye^(2yz)+1],
∂z/∂x = -Fy/Fz = -[2ze^(2yz)+2y]/[2ye^(2yz)+1],
x = y = 1/2 , z = 0 代入,得 ∂z/∂x = -1/2, ∂z/∂y = -1/2,
dz = -(1/2)(dx+dy)
x = y = 1/2 时, e^z+z =1 , 得 z = 0。
求偏导数有两种方法:
法1:式 ① 两边对 x 求偏导, 注意 z 是 x,y 的函数,得
e^(2yz)(2y∂z/∂x)+1+∂z/∂x = 0, x = y = 1/2 , z = 0 代入,得
∂z/∂x+1+∂z/∂x = 0, ∂z/∂x = -1/2;
式 ① 两边对 y 求偏导, 得
e^(2yz)(2z+2y∂z/∂y)+2y+∂z/∂y = 0, x = y = 1/2 , z = 0 代入,得
∂z/∂y+1+∂z/∂y = 0, ∂z/∂y = -1/2;
dz = -(1/2)(dx+dy)
法2:记 F = e^(2yz)+x+y^2+z-7/4,得
Fx = 1, Fy = 2ze^(2yz)+2y, Fz = 2ye^(2yz)+1,
∂z/∂x = -Fx/Fz = -1/[2ye^(2yz)+1],
∂z/∂x = -Fy/Fz = -[2ze^(2yz)+2y]/[2ye^(2yz)+1],
x = y = 1/2 , z = 0 代入,得 ∂z/∂x = -1/2, ∂z/∂y = -1/2,
dz = -(1/2)(dx+dy)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询