一道高一数学题,平面与直线位置关系,
如图,正方体ABCD-A1B1C1D1中,E为DD1中点,试判断BD1与平面AEC位置关系,并说明理由。...
如图,正方体ABCD-A1 B1 C1 D1中,E为DD1中点,试判断BD1与平面AEC位置关系,并说明理由。
展开
展开全部
平行
证明:连接BD交AC于F,连接EF
在三角形DBD1中,E为DD1中点,F为BD中点
所以EF为三角形的中位线
所以EF//BD1
又因为EF属于面ACE
且BD1不属于面ACE
所以BD1//面ACE
证明:连接BD交AC于F,连接EF
在三角形DBD1中,E为DD1中点,F为BD中点
所以EF为三角形的中位线
所以EF//BD1
又因为EF属于面ACE
且BD1不属于面ACE
所以BD1//面ACE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BD、、交AC于F、、在三角形D1DB中、、E、F为D1D、DB的中点、、所以FE为中位线、所以FE//D1B、有因为FE在平面AEC里、所以平面AEC//D1B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
平行。
更多追问追答
追问
那条跟那条平行?可以证明下吗
追答
连接BD交AC于一点O,再连接OE,在三角形BDD1中,O和E分别是两边中点,故有BD1与OE平行,另由OE属于平面AEC可得答案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询