x^2+(y-2)^2=1绕x轴,求旋转体的体积
1个回答
展开全部
简单方法是用古鲁金第二定理,即形心绕旋转轴的周长乘以图形的面积,这是一个救生圈形状,截面是一个圆,面积是π*1^2=π,形心即为圆心,其轨迹是大圆,圆心至X轴距离为2,故周长为2π*2=4π,
∴V=4π*π=4π^2.
若用定积分法,可以把圆用Y轴分成两部分,求出半圆绕X轴的体积再乘以2即可,
从圆心作X轴平行线,即y=2,设中间圆柱体积为V,则半旋转体体积为上1/4圆所绕体积-圆柱体积+圆柱体积-下1/4圆所绕体积,V正负抵销,
上半圆:y=2+√(1-x^2),
下半圆:y=2-√(1-x^2),
∴V=2π∫[0,1]{ [2+√(1-x^2)]^2-[2-√(1-x^2)]^2}dx
=2π∫[0,1]{[2+√(1-x^2)+2-√(1-x^2)][2+√(1-x^2)-2+√(1-x^2)]dx
=2π∫[0,1]4*2√(1-x^2)dx
=16π∫[0,1]√(1-x^2)dx,
设x=sint,dx=cost,
V=16π∫[0,π/2](cost)^2dt
=16π∫ [0,π/2](1/2)(1+cos2t)dt
=16π*(t/2)[0,π/2]+16π*(1/4)sin2t[0,π/2]
=16π*π/4+0
=4π^2.
∴V=4π*π=4π^2.
若用定积分法,可以把圆用Y轴分成两部分,求出半圆绕X轴的体积再乘以2即可,
从圆心作X轴平行线,即y=2,设中间圆柱体积为V,则半旋转体体积为上1/4圆所绕体积-圆柱体积+圆柱体积-下1/4圆所绕体积,V正负抵销,
上半圆:y=2+√(1-x^2),
下半圆:y=2-√(1-x^2),
∴V=2π∫[0,1]{ [2+√(1-x^2)]^2-[2-√(1-x^2)]^2}dx
=2π∫[0,1]{[2+√(1-x^2)+2-√(1-x^2)][2+√(1-x^2)-2+√(1-x^2)]dx
=2π∫[0,1]4*2√(1-x^2)dx
=16π∫[0,1]√(1-x^2)dx,
设x=sint,dx=cost,
V=16π∫[0,π/2](cost)^2dt
=16π∫ [0,π/2](1/2)(1+cos2t)dt
=16π*(t/2)[0,π/2]+16π*(1/4)sin2t[0,π/2]
=16π*π/4+0
=4π^2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询