∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^2)^1/2|]

 我来答
wjl371116
推荐于2019-03-15 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67413

向TA提问 私信TA
展开全部
∫[√(x²-a²)]dx=?
解:设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,√(x²-a²)=atanu,
secu=x/a, tanu=[√(x²-a²)]/a.
代入原式得:∫[√(x²-a²)]dx=a²∫tan²usecudu=a²∫secu(sec²u-1)du=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
[原答案错个符号]。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式