解:(1)∵在Rt△ABC中,∠C=90°,cosA=4/5,AB=10
∴AC = AB.cosA = 8, AC²+BC² = AB² => BC=6
当点E与点B重合时,即DB⊥DP,∠BDP=90°
∴在Rt△BDP中,有PD²+BD²=PB² ①
∵点P在射线AC上
∴PC⊥BC
则在Rt△BCD中,有CD²+BC²=BD² ②
∴PD²+BD²=PD²+CD²+BC² = PB² ③
∵点A,D在以P为圆心的圆上,设PA=PD=r
作PF⊥AD于F
∴在Rt△AFP中,AF=AP.cosA = (4/5)AP
∵PA=PD且PF⊥AD于F
∴点F为AD中点
AD = 2AF=(8/5)AP
设PA=PD=r(0<r≤10)
则,由③得:PD²+(AC-AD)²+6² = (AB-AP)²
r²+[8-(8/5)r]²+6² = (10-r)²
解得: r=35/16或r=0(舍)
CD = AC-AD = 8-(8/5)r = 9/2
代入②得,BD = 15/2
tan∠DBA = DP/DB = (35/16)/(15/2) = 7/24
(2)以点A为原点,AB为X轴正方向,垂直AB的直线为Y轴,建立平面直角坐标系
则A(0,0),B(10,0),C(32/5,24/5)
由点P在边AB上,且○P的半径为AP=x得:P点坐标(x,0) (0<x≤10)
设D点坐标(Xd,Yd)
由AD=8/5r,PD=r得:
Xd²+Yd²=[(8/5)x]²且(Xd-x)²+Yd²=x²
解得:Xd=(32/25)x, Yd=(24/25)x
由D点不与A、C重合可得,x≠0且x≠5
∴Xd =(32/25)x ≠x ,Yd=(24/25)x ≠ x =>直线DP斜率存在且不为0
直线DP的斜率k = (Yp-Yd)/(Xp-Xd) = 24/7
由DE⊥DP得: 直线DE的斜率k2 = -1/k = -7/24
设直线DE解析式为y=(k2)x+b2
代入D点坐标得:(24/25)Xp= (-7/24) (32/25)Xp + b2
b2 = (4/3)Xp
∴直线DE:y = (-7/24)x + (4/3)Xp
设直线BC解析式:(y-Yc)/(Yb-Yc)=(x-Xc)/(Xb-Xc)
y=-(4/3)x +(40/3)
联立直线DE,BC解析式,解Xe = (-32/25)x+(64/5),Ye = (128/75)x-(56/15)
∴S△CDE = (1/2)|CD||CE| = (1/2)√{[(32/25)x-(32/5)]²+[(24/25)x-(24/5)]²}×√{[(-32/25)x+(32/5)]²+[(128/75)x-(128/15)]²}
=(1/2)√{[(32/25)(x-5)]²+[(24/25)(x-5)]²}×√{[(-32/25)(x-5)]²+[(128/75)(x-5)]²}
=(1/2)(8/5)(32/15)(x-5)²
=(128/75)(x-5)²
即所求 y = (128/75)(x-5)² ,定义域为x∈{x|0<x≤10且x≠5}
(3)∵点B、C、E三点共线
∴当CE=(1/3)CB时,有Yc-Ye=±(1/3)(Yc-Yb)
即(128/15)-(128/75)x = ±(1/3)(24/5)
x = 5±(15/16)
解得x = 65/16 或x = 95/16
即PA长度为65/16 或 95/16