数学几何问题~~~~急急急!!!(坐等) 要步骤!想了很久做不出 可附加悬赏~~两题都要只会一题也好----

Azaria_BY
2011-05-25 · TA获得超过4361个赞
知道答主
回答量:24
采纳率:0%
帮助的人:26.9万
展开全部
解:(1)证明:连接AD
∵△ABC是等腰直角三角形,D是BC的中点
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
又∵BP=AQ,
∴△BPD≌△AQD,
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,
∴△PDQ为等腰直角三角形;
(2)当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
由(1)知△ABD为等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP= 12AB,
∴四边形APDQ为正方形.

第二题:
解:(1)∵四边形ABCD是平行四边形,
∴AO=CO.
∵△ACE是等边三角形,
∴AE=CE.
∵EO=EO,
∴△AOE≌△COE.
∴∠AOE=∠COE.
∵∠AOE+∠COE=180°,
∴∠AOE=∠COE=90°,
∴BE⊥AC.
∴四边形ABCD是菱形.

(2)从上易得:△AOE是直角三角形,
∴∠AED+∠EAO=90°
∵△ACE是等边三角形,
∴∠EAO=60°,
∴∠AED=30°
∵∠AED=2∠EAD
∴∠EAD=15°,
∴∠DAO=∠EAO-∠EAD=45°
∵四边形ABCD是菱形.
∴∠BAD=2∠DAO=90°
∴四边形ABCD是正方形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式