展开全部
x = 0 时, y' = 0, y = C
x ≠ 0 时, 记 p = y', 则微分方程化为
xp' + xp^2 - p = 0, xp' - p = -xp^2, 为柏努力方程,
令 z = 1/p, 则 p = 1/z, p' = (-1/z^2)z'
xp' - p = -xp^2 化为 (-x/z^2)z' - 1/z = -x/z^2, 即
xz' + z = x, 即 z' + z/x = 1 为一阶线性微分方程, 通解是
z = e^(-∫dx/x)[∫e^(∫dx/x)dx + C] = (1/x)[∫xdx + C]
= (x^2/2 + C)/x , 即 p = dy/dx = x/(x^2/2 + C)
dy = xdx/(x^2/2 + C), y = ln|x^2/2+C| + C1
x ≠ 0 时, 记 p = y', 则微分方程化为
xp' + xp^2 - p = 0, xp' - p = -xp^2, 为柏努力方程,
令 z = 1/p, 则 p = 1/z, p' = (-1/z^2)z'
xp' - p = -xp^2 化为 (-x/z^2)z' - 1/z = -x/z^2, 即
xz' + z = x, 即 z' + z/x = 1 为一阶线性微分方程, 通解是
z = e^(-∫dx/x)[∫e^(∫dx/x)dx + C] = (1/x)[∫xdx + C]
= (x^2/2 + C)/x , 即 p = dy/dx = x/(x^2/2 + C)
dy = xdx/(x^2/2 + C), y = ln|x^2/2+C| + C1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询