已知正实数x、y、z满足x+y+xy=8 y+z+zy=15 z+x+xz=35 ,则x+ y+z+xyz=?

 我来答
科创17
2022-06-22 · TA获得超过5906个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
x+y+xy=8 x(1+y)+y=8
x(1+y)+(1+y)=9
(x+1)(y+1)=9.(1)
同理宽正可得:
(z+1)(x+1)=16.(2)
(z+1)(y+1)=36.(3)
所以(1)/慎团悔(2):
(y+1)/(z+1)=9/16.(4)
带入(3)式,得:
x+1=9/2(-9/2舍去),所以x=7/2
然后带入(1),(3)式
得或庆:y=1,z=7
所以:
x+y+z+xyz=7/2+1+7+7/2*1*7=36
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式