什么是锐角三角形和钝角三角形
三个内角都是锐角的三角形叫做锐角三角形。 大于0°而小于90°的角,叫做锐角。有一个角是钝角的三角形就是钝角三角形(显然只可能有一个角是钝角)。
锐角三角形的性质
1、锐角三角形的三个角都是锐角(定义);
2、设锐角三角形的三边a<b<c,则a²+b²>c²;
3、锐角三角形的每条高均在三角形内;
4、三个内角和180°,外角和360°;
5、设锐角三角形的三边为a、b、c,则a+b>c(三角形共性)。
钝角三角形的性质
1、钝角三角形的两条高在钝角三角形的外部,另一条在三角形内部。
2、钝角三角形中,两个锐角度数之和小于钝角度数。
3、钝角三角形的面积S=ah/2,,其中a,h分别为一对底和高。
4、内角和为180度。(这也是所有平面三角形的性质)
5、三角形外角和为360度。(所有多边封闭图形外角和均为360度)
三角形的性质
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360°(外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12、等底同高的三角形面积相等。
13、底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。