高中数学解析几何怎么做?求技巧!!
高中数学解析几何技巧:
1、对于直线及其方程部分
从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾尺手斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。
2、对于椭圆和双曲线部分
椭圆和双曲线的性质差不多,许多性质也相似,往往差一个加减号,定义性质也是要灵活运用的,直线方程与曲线方程的联立代换是必须掌握的,光学性质也可用于帮助方便解题。
3、对于线性规划部分
首先要看得懂线性规划方程迹告组所表示的区域。对于此类问题可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。
4、对于圆及其方程
需要熟记圆的标准方姿困明程和一般方程分别代表的含义。对于圆部分的学习,可以拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。
5、对于椭圆、抛物线、双曲线
可以分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。
6、选择题和填空题上
做这些题目的时候可以采用一些特殊值方法,多采用定义性质解决问题,结合余弦定理和正弦定理。注意不要一开始就用直线和曲线方程的联立,计算量很大,不利于时间的利用。
参考资料来源:百度百科-高中数学
知识积累方面 公式你要记好 而且保证清楚每一个字母形式的几何意义 也就是说 你能把公式推出来最好 但是时间也不多了 如果你能记得渗耐好 至少基础分是不会少多少的 单选等小题来说 注重考察各种性质 比如圆锥曲线就多有准线问题 如果实在弄不懂题 先把准线关系找到 看看跟题目是不是有转换关系 再比如直线问题 这个多是结合性质的问题 你要清楚直线和各种曲线的关系 还有一种类型 解析几何会作为其他知识的背景出现 这要求你要分别考察主体 不要一看到解析几何就慌了 可能人家问的也不是这个内容 总之 要淡定 高考不会像模拟那样过分为难你
技巧方面 多体现在大题上 有一类题稍简单 只要把所有的条件都转换成式子 再顺着关系计算就能出结果 这类问题通常计算量很大 你要保证每天都有一定的计算量练习 为这个做准备 还有一类 应该是你想知道的大题的技巧性问题 我们冷静地想想 回首多年高考真题 真正的冷门问题有多少?形变的基础上是有一个核心的 这个就是解析几何的实质 不管什么问题 最重要的都是你的观察力 不要被以前做过的问题和传统思想局限了 凭你学科以外的观察思想 完全可以发现一些问题的 有的高考题的数字设置上都是有道理的 这个数字很可能代表一种特殊的简便算法 这个就是解析几何的个性之一 也极有可能是这个问题的突破口之一 当然 更多的问题出现在图形本身 所谓解析几何 是一种数形的结合 核心是转换的思想 作为对策 你要熟练地掌握各种数形转换类问题 举个最简单的例子 给出两个向量相乘等于0 那么你应该可以转换为二者有垂直关系 这是入手的阶段 也就是说你可以把题读懂 其次重要的思想 是代换问题 这个有多方渠道 比如坐标本身 比如向量 再比如参数方程 如果你对参数方程很掌握 那么我很推荐这个渠道 特别是涉及距离的问题 直线标准参数方程的参数t的几何意义就很好的体现出来了 根据题目的指示 往下代换 有时利用韦达定理去解释代换出的结果的关系 这个定理具有极强的限制作用 如果不熟悉 建议回头看看函数与方程的问题 然后 你就各种算~~
这个关头的boss问题 心理素质一定要硬!快高考了 解析几何是个比较复杂的问题 不建议再做模拟 要回到高考 模拟题压力意义比较大 但是我们要面对的还是高凳喊橡考 不要太突出知识对你做出这道枣旁题的决定意义 很多突破口 我们凭借观察就能得到 所以说 高考还是考能力的 不要慌 头脑清醒 计算快速而且准确 这个问题你就赢了一半了 万变不离其综 除去繁复的计算 真正的考察角度又有多少?要对自己有信心!要相信意识的能动作用~如果不相信奇迹 我们就去创造一个!祝你成功!
广告 您可能关注的内容 |