证明若函数f(x)在R内可导且f'(x)=f(x),f(0)=1,则f(x)=e^x

 我来答
机器1718
2022-06-22 · TA获得超过6798个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:157万
展开全部
(e^(-x)*f(x))'=e^(-x)*f'(x)-e^(-x)*f(x)=e^(-x)*【f'(x)-f(x)】=0,因此
e^(-x)*f(x)是常数函数,且e^(0)*f(0)=1,于是有
e^(-x)*f(x)=1,f(x)=e^x.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式