方程9^x+6^x=2^(2x+1)的解
1个回答
展开全部
因为 9^x+6^x=2^2x+1
所以 3^2x + (2*3)^x = 2^2x + 1
即 (3^x - 2^x)(3^x + 2^x) = 1 - (2*3)^x
= 1 - (2^x)*(3^x)
当 x > 0 时 (3^x - 2^x)(3^x + 2^x) > 0
而 1 - (2^x)*(3^x) < 0
当 x < 0 时 (3^x - 2^x)(3^x + 2^x) < 0
而 1 - (2^x)*(3^x) > 0
只有 当 x = 0 时 (3^x - 2^x)(3^x + 2^x) = 0 = 1 - (2^x)*(3^x)
即 方程 的解为 x = 0
所以 3^2x + (2*3)^x = 2^2x + 1
即 (3^x - 2^x)(3^x + 2^x) = 1 - (2*3)^x
= 1 - (2^x)*(3^x)
当 x > 0 时 (3^x - 2^x)(3^x + 2^x) > 0
而 1 - (2^x)*(3^x) < 0
当 x < 0 时 (3^x - 2^x)(3^x + 2^x) < 0
而 1 - (2^x)*(3^x) > 0
只有 当 x = 0 时 (3^x - 2^x)(3^x + 2^x) = 0 = 1 - (2^x)*(3^x)
即 方程 的解为 x = 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询