若an=(2n-1)/2^(n+1),求Sn
2个回答
展开全部
let
S=1.(1/2)^1+2.(1/2)^2+...+n.(1/2^n) (1)
(1/2)S= 1.(1/2)^2+2.(1/2)^3+...+n.(1/2^(n+1)) (2)
(1)-(2)
(1/2)S =[(1/2)^1-(1/2)^2+...+(1/2)^n] -n.(1/2^(n+1))
=[ 1 -1/2^(n+1) ] -n.(1/2^(n+1))
S = 2[ 1 -1/2^(n+1) ] -n.(1/2^n)
= 2 - (n+1)/2^n
an
=(2n-1)/2^(n+1)
=n.(1/2^n) - 1/2^(n+1)
Sn
=a1+a2+...+an
=S - (1/2)[ 1 - 1/2^(n+1)]
= 2 - (n+1)/2^n -(1/2)[ 1 - 1/2^(n+1)]
=3/2 - (n+3/4)/2^n
S=1.(1/2)^1+2.(1/2)^2+...+n.(1/2^n) (1)
(1/2)S= 1.(1/2)^2+2.(1/2)^3+...+n.(1/2^(n+1)) (2)
(1)-(2)
(1/2)S =[(1/2)^1-(1/2)^2+...+(1/2)^n] -n.(1/2^(n+1))
=[ 1 -1/2^(n+1) ] -n.(1/2^(n+1))
S = 2[ 1 -1/2^(n+1) ] -n.(1/2^n)
= 2 - (n+1)/2^n
an
=(2n-1)/2^(n+1)
=n.(1/2^n) - 1/2^(n+1)
Sn
=a1+a2+...+an
=S - (1/2)[ 1 - 1/2^(n+1)]
= 2 - (n+1)/2^n -(1/2)[ 1 - 1/2^(n+1)]
=3/2 - (n+3/4)/2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询