求以相交两圆C1:x^2+y^2+4x+1=0及C2:x^2+y^2+2x+2y+1=0的公共弦为直径的圆方程是?
展开全部
x^2+y^2+4x+1=0
x^2+y^2+2x+2y+1=0
2y-2x=0
y=x
2x^2+4x+1=0
2(x+1)^2=1
x1=-1+√2/2 y1=-1+√2/2
x2=-1-√2/2 y2=-1-√2/2
d^2=(x1-x2)^2+(y1-y2)^2=2*2=4
r^2=1
O'x=(x1+x2)/2=-1
O'y=(y1+y2)/2=-1
(x+1)^2+(y+1)^2=1
x^2+y^2+2x+2y+1=0
2y-2x=0
y=x
2x^2+4x+1=0
2(x+1)^2=1
x1=-1+√2/2 y1=-1+√2/2
x2=-1-√2/2 y2=-1-√2/2
d^2=(x1-x2)^2+(y1-y2)^2=2*2=4
r^2=1
O'x=(x1+x2)/2=-1
O'y=(y1+y2)/2=-1
(x+1)^2+(y+1)^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询