无理数的概念和证明方法

 我来答
机器1718
2022-07-11 · TA获得超过6837个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部

无限不循环的小数就是无理数。换句话说,就是不可以化为整数或者整数比的数。常见的无理数有非完全平方数的平方根、π等。

无理数的概念

在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

证明方法

例子:证明根号2是无理数:

证明:若根号2是有理数,则设它等于m/n(m、n为不为零的整数,m、n互质)

所以 (m/n)^2=根号2 ^2 =2

所以 m^2/n^2=2

所以 m^2=2*n^2

所以 m^2是偶数,设m=2k(k是整数)

所以 m^2=4k^2=2n^2

所以 n^2=2k^2

所以 n是偶数

因为 m、n互质

所以矛盾,即根号2不是有理数,它是无理数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式