极限,以及敛散性 怎么判断敛散性.敛散性的定义!
1个回答
展开全部
(1)首先,考虑当项数无限增大时,一般项是否趋于零.如果不趋于零,便可判断级数发散.如果趋千零,则考虑其它方法.
(2)考察级数的部分和数列的敛散性是否容易确定,如能确定,则级数的敛散性自然也明确了.但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,·这时就应考虑其它方法.
(3)如果级数是正项级数,可以先考虑使用比值判别法或根值判别法是否有效.如果无效,再考虑用比较判别法.对于某些正项级数,可以考虑使用积分判别法.这是因为比值判别法与根值判别法使用起来一般比较简便,而比较判别法适应的范围却很大.
(4)如果级数是任意项级数,应首先考虑它是否绝对收敛.当不绝对收敛时,可以看看它是不是能用莱布尼兹判别法判定其收敛性的交错级数.
(5)级数敛散性的柯西判别准则给出了判断级数收敛的充要条件,因此,从逻辑上讲,它适应于一切级数敛散性的判断.但是,要检测一个具体的级数是否满足这个判别准则的条件本身就不比检测这个级数是否收敛容易,因而一般在检测具体级数的敛散性时,使用柯西判别准则是有困难的,甚至是无法进行的.不过,对于某些具体的级数,使用柯西判别准则也是行之有效的.因此,我们也要考虑它的使用,特别是上述诸多方法行不通的时候.
(2)考察级数的部分和数列的敛散性是否容易确定,如能确定,则级数的敛散性自然也明确了.但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,·这时就应考虑其它方法.
(3)如果级数是正项级数,可以先考虑使用比值判别法或根值判别法是否有效.如果无效,再考虑用比较判别法.对于某些正项级数,可以考虑使用积分判别法.这是因为比值判别法与根值判别法使用起来一般比较简便,而比较判别法适应的范围却很大.
(4)如果级数是任意项级数,应首先考虑它是否绝对收敛.当不绝对收敛时,可以看看它是不是能用莱布尼兹判别法判定其收敛性的交错级数.
(5)级数敛散性的柯西判别准则给出了判断级数收敛的充要条件,因此,从逻辑上讲,它适应于一切级数敛散性的判断.但是,要检测一个具体的级数是否满足这个判别准则的条件本身就不比检测这个级数是否收敛容易,因而一般在检测具体级数的敛散性时,使用柯西判别准则是有困难的,甚至是无法进行的.不过,对于某些具体的级数,使用柯西判别准则也是行之有效的.因此,我们也要考虑它的使用,特别是上述诸多方法行不通的时候.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询