设随机变量X的概率密度为f(x)=e-x,x≥0求P(-1<X<2)
1个回答
展开全部
^X~N(0,1),y=e^(-x)y>0
X的密度函数是fX(x)=1/√2π*e^(-x^2/2)
那么
FY(y)=P(Y<=y)=P(e^(-x)<=y)=P(x>=-lny)=1-P(x<-lny)
=1-FX(-lny)FX(x)FY(y)表示XY的分布函数
所以y的密度函数是:
fY(y)=FY'(y)=(1-FX(-lny))'=(-1)*(FX(-lny)'*(-lny)'
=(-1)*fX(-lny)*(-1/y)
=1/y*1/√2π*e^(-(-lny)^2/2)
=1/y*1/√2π*e^((lny)^2/2)y>0
扩展资料
设随机变量X具有概率密度fX(x),-∞<x<∞,由设函数g(x)处处可导且恒有g'(x)>0(或恒有g'(x)<0),则Y=g(X)是连续型随机变量,其概率密度为:
单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询