求定积分∫上限e下限1xlnxdx

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

∫xlnxdx上限为e下限为1的定积分为:1/4(e^2+1)。

解答过程如下:

∫(e,1)lnxd(1/2*x^2)

=∫(e,1)1/2*x^2lnx–∫(e,1)1/2*x^2d(lnx)

=1/2e^2–∫(e,1)1/2xdx

=1/2e^2–1/4e^2+1/4

=1/4(e^2+1)

扩展资料:

求不定积分的方法:

第一个替换只是一个拼凑,使用f'(x)dx=df(x);剩下的部分是关于f(x)的函数,然后把f(x)看成一个整体,然后求出结果。(用代换法,把f(x)换成t,然后再换回来。)

分割点,是几种类型的固定三角函数在x,或指数函数和对数函数乘以x,记忆方法是使用上述的f(x)dx=df(x)变形,再用∫XDF(x)=f(x)x-∫f(x)dx这样的公式,x,当然,可以更换其他g(x)。


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式