变上限定积分的上限趋于0,而下限是0,上限和下限无限地接近,所以积分的值和0无限地接近,所以极限是0/0型,可以使用洛必达法则。
【在以上两个极限运算中,分母都没有什么定积分。第(1)题的分母是x;第(2)题的分母是x²;在x→0时分子分母都→0,因此属0/0型,可以使用洛必达法则。】
扩展资料:
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
参考资料来源:百度百科-定积分