微积分是怎么样计算的?
对于一元函数有,可微<=>可导=>连续=>可积
对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。
可导与连续的关系:可导必连续,连续不一定可导;
可微与连续的关系:可微与可导是一样的;
可积与连续的关系:可积不一定连续,连续必定可积;
可导与可积的关系:可导一般可积,可积推不出一定可导;
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
微分一般就是指导数
积分就是把微分反过来
y=x^2
y导数=2x
S2x=x^2+C(C为常数)
设函数f(x)在区间[a,b]上连续,并且设x为[a,b]上的一点,现在来考察f(x)在部分区间[a,x]上的定积分,知道f(x)在[a,x]上仍旧连续,因此此定积分存在。
如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,记作φ(x):注意:为了明确起见,我们改换了积分变量(定积分与积分变量的记法无关)
折叠几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
换元法
换元法(一):设f(u)具有原函数F(u),u=g(x)可导,那末F[g(x)]是f[g(x)]g'(x)的原函数.
即有换元公式:
例题:求
解答:这个积分在基本积分表中是查不到的,故我们要利用换元法。
设u=2x,那末cos2x=cosu,du=2dx,因此:
换元法(二):设x=g(t)是单调的,可导的函数,并且g'(t)≠0,又设f[g(t)]g'(t)具有原函数φ(t),
则φ[g(x)]是f(x)的原函数.(其中g(x)是x=g(t)的反函数)
即有换元公式:
例题:求
解答:这个积分的困难在于有根式,但是我们可以利用三角公式来换元.
设x=asint(-π/2<t<π/2),那末,dx=acostdt,于是有:
关于换元法的问题
不定积分的换元法是在复合函数求导法则的基础上得来的,我们应根据具体实例来选择所用的方法,求不定积分不象求导那样有规则可依,因此要想熟练的求出某函数的不定积分,只有作大量的练习。
分部积分法
这种方法是利用两个函数乘积的求导法则得来的。
设函数u=u(x)及v=v(x)具有连续导数.我们知道,两个函数乘积的求导公式为:
(uv)'=u'v+uv',移项,得
uv'=(uv)'-u'v,对其两边求不定积分得:
,
这就是分部积分公式
例题:求
解答:这个积分用换元法不易得出结果,我们来利用分部积分法。
设u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部积分公式得:
关于分部积分法的问题
在使用分部积分法时,应恰当的选取u和dv,否则就会南辕北辙。选取u和dv一般要考虑两点:
(1)v要容易求得;
(2)容易积出。
积分就是把微分反过来
y=x^2
y导数=2x
S2x=x^2+C(C为常数)
广告 您可能关注的内容 |