
如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0?
1个回答
展开全部
直观理偶函数的导函数是奇函数,在0点有定义,则f‘(0)=0;
证明:
因为是偶函数,所以f(x)=f(-x),对该式子两边求导得
f'(x)=-f'(-x),可见f'(x)是奇函数,又因为0点有意义,f’(0)=0,10,
证明:
因为是偶函数,所以f(x)=f(-x),对该式子两边求导得
f'(x)=-f'(-x),可见f'(x)是奇函数,又因为0点有意义,f’(0)=0,10,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询