求曲线x^2+xy+y^2=3在点(1,1)处的切线方程?
1个回答
展开全部
两边对x求导有 2x+y+xy'+2yy'=0,
把x=1,y=1代入有 2 + 1 + y' +2y'=0,得 y‘=-1
所以切线斜率为-1
所以切线方程为 y-1 = -(x-1)
整理有 y=-x+2,9,
将(1,1)代入x^2+xy+y^2=3成立,
则点(1,1)在曲线上
求导数2x+y+xy'+2yy'=0
y'=-(2x+y)/(x+2y)=-1
y-1=-(x-1)
所求的切线方程是x+y-2=0,1,
把x=1,y=1代入有 2 + 1 + y' +2y'=0,得 y‘=-1
所以切线斜率为-1
所以切线方程为 y-1 = -(x-1)
整理有 y=-x+2,9,
将(1,1)代入x^2+xy+y^2=3成立,
则点(1,1)在曲线上
求导数2x+y+xy'+2yy'=0
y'=-(2x+y)/(x+2y)=-1
y-1=-(x-1)
所求的切线方程是x+y-2=0,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询