一个数被5除,余数是4,这个数是多少?
2022-12-29
展开全部
解析:本题考查的是同余问题,考查了整数除法的有关知识。由题目可知,这道题里面的数只有被除数改变了,余数和商还有除数都没有变。如果被除数增加那么商就会有变化,商增加的数就是被除数增多的数是除数的倍数,根据这个可以求出除数来,再进一步解决问题即可。
解题过程如下:
解:
(259-184)÷5
=75÷5
=15(这是除数)
184÷15=12…4
答:正确的商应该是12余4。
扩展资料:
性质
余数有如下一些重要性质(a,b,c 均为自然数):
(1)余数和除数的差的绝对值要小于除数的绝对值(适用于实数域);
(2)被除数 = 除数 × 商 + 余数;
除数=(被除数 - 余数)÷ 商;
商=(被除数 - 余数)÷除数;
余数=被除数 - 除数 × 商。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b地和除以c的余数(a、b两数除以c在没有余数的情况下除外),等于a,b分别除以c的余数之和(或这个和除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
解题过程如下:
解:
(259-184)÷5
=75÷5
=15(这是除数)
184÷15=12…4
答:正确的商应该是12余4。
扩展资料:
性质
余数有如下一些重要性质(a,b,c 均为自然数):
(1)余数和除数的差的绝对值要小于除数的绝对值(适用于实数域);
(2)被除数 = 除数 × 商 + 余数;
除数=(被除数 - 余数)÷ 商;
商=(被除数 - 余数)÷除数;
余数=被除数 - 除数 × 商。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b地和除以c的余数(a、b两数除以c在没有余数的情况下除外),等于a,b分别除以c的余数之和(或这个和除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询