等比数列sn^2÷s2n?

 我来答
帐号已注销
2022-12-27 · 超过212用户采纳过TA的回答
知道小有建树答主
回答量:1265
采纳率:0%
帮助的人:33.5万
展开全部
等比数列的前n项和 Sn、S2n-Sn、S3n-S2n成等比数列,公比为q^n。
证明如下:
设等比数列{an}的公比为q,
an=a1q^(n-1)
am=a1q^(m-1)
两式相除得an/am=q^(n-m),∴an=amq^(n-m)。
S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a2n=Sn+(a1q^n+a2q^n+...+anq^n)=Sn+(a1+a2+...+an)q^n=Sn+Snq^n
所以 (S2n-Sn)/Sn=q^n。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式