线性规划的对偶问题有什么意义?

 我来答
生活类答题小能手
高能答主

2022-08-22 · 专注生活类答题,解决生活问题
生活类答题小能手
采纳数:1645 获赞数:295649

向TA提问 私信TA
展开全部

线性规划模型的对偶性,对线性规划模型理论、求解有着很重要的意义。特别在应用上,线性规划对偶问题的最优解,就是资源的影子价格,它对于线性规划模型的经济分析,用于对经济管理工作的指导起了极为重要的作用。

市场价格是已知的,而影子价格则与资源的利用情况有关,利用的好,影子价格就高,反之亦然。影子价格是一种边际价格(对偶变量在经济上表示原问题第i种资源的边际价值) 。

影子价格又是一种机会成本。当市场价大于影子价格,卖出资源;当市场价小于影子价格,买入资源,组织生产。影子价格说明了不同资源对总的经济效益产生的影响,因此对企业经营管理提供一些有价值的信息。



扩展资料

对偶理论则广泛应用于经济分析中。例如,在经济均衡的分析中,可以通过设计优化模型,运用对偶理论和模型体系研究市场均衡及其实现均衡所需要的基本条件。

对偶原理在现代数学特别是几何学、代数学、拓扑学等学科中有着广泛的应用,对于推动数学的发展起着很好的作用。

举例来讲,在范畴论中,借助于对偶变换(对偶化),由始对象便可得终对象、由单态射得满态射、由核得上核、由积得上积;在同调代数中,由正向极限得反向极限、由内射模得投射模、由内射包得投射包、由投射分解(维数)得内射分解(维数)、由复形得上复形、由双复形得上双复形、由同调得上同调等。

参考资料来源:百度百科-对偶

参考资料来源:百度百科-对偶问题

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式