求矩阵特征值和特征向量,A=1/4 |2 1 1 || 1 2 1 || 1 1 2 |
展开全部
A=
1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2
解方程|A-xE|=0,化简得到
(x-1)(x-1/4)(x-1/4)=0
所以特征值是1,1/4,1/4
x=1对应的特征向量:
A-1E=
-1/2 1/4 1/4
1/4 -1/2 1/4
1/4 1/4 -1/2
求(A-1E)x=0的基础解系为[1 1 1]',所以x=1的特征向量为a1=[1 1 1]'
x=1/4对应的特征向量:
A-(1/4)E=
1/4 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4
求[A-(1/4)E]x=0的基础解系为[-1 0 1]'和[-1 1 0]',所以x=1/4的特征向量为a2=[-1 0 1]'和a3=[-1 1 0]'
对角化:
P=[a1 a2 a3]=
1 -1 -1
1 0 1
1 1 0
则
P^(-1) * A * P =
1 0 0
0 1/4 0
0 0 1/4
1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2
解方程|A-xE|=0,化简得到
(x-1)(x-1/4)(x-1/4)=0
所以特征值是1,1/4,1/4
x=1对应的特征向量:
A-1E=
-1/2 1/4 1/4
1/4 -1/2 1/4
1/4 1/4 -1/2
求(A-1E)x=0的基础解系为[1 1 1]',所以x=1的特征向量为a1=[1 1 1]'
x=1/4对应的特征向量:
A-(1/4)E=
1/4 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4
求[A-(1/4)E]x=0的基础解系为[-1 0 1]'和[-1 1 0]',所以x=1/4的特征向量为a2=[-1 0 1]'和a3=[-1 1 0]'
对角化:
P=[a1 a2 a3]=
1 -1 -1
1 0 1
1 1 0
则
P^(-1) * A * P =
1 0 0
0 1/4 0
0 0 1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询