求积分{(x-1)/(x^2+3)}dx,麻烦写一下过程,谢谢
2个回答
展开全部
∫(x-1)dx/(x^2+3)
=∫xdx/(x^2+3) - ∫dx/(x^2+3)
=(1/2)∫d(x^2+3)/(x^2+3) - (1/3)∫dx/{[(x/3^(1/2)]^2 + 1}
=(1/2)ln(x^2+3) - [1/3^(1/2)]∫烂判厅d[x/3^(1/2)]/{[x/3^(1/2)]^2 + 1}
=(1/饥隐2)ln(x^2+3) - 1/3^(1/2) arctan[x/3^(1/冲举2)] + C
=∫xdx/(x^2+3) - ∫dx/(x^2+3)
=(1/2)∫d(x^2+3)/(x^2+3) - (1/3)∫dx/{[(x/3^(1/2)]^2 + 1}
=(1/2)ln(x^2+3) - [1/3^(1/2)]∫烂判厅d[x/3^(1/2)]/{[x/3^(1/2)]^2 + 1}
=(1/饥隐2)ln(x^2+3) - 1/3^(1/2) arctan[x/3^(1/冲举2)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询