不定积分:e^x(sinx)^2dx?
1个回答
展开全部
sin²x=(1/2)(1-cos2x) ∫ e^xsin²x dx
=(1/2)∫ e^x(1-cos2x) dx
=(1/2)∫ e^x dx - (1/2)∫ e^xcos2x dx
=(1/2)e^x - (1/2)∫ e^xcos2x dx
下面单独计算 ∫ e^xcos2x dx =∫ cos2x de^x
分部积分
=e^xcos2x + 2∫ e^xsin2xdx
=e^xcos2x + 2∫ sin2xde^x
再分部
=e^xcos2x + 2e^xsin2x - 4∫ e^xcos2x dx
将-4∫ e^xcos2x dx
移到左边与左边合并后除以系数
∫ e^xcos2x dx
=(1/5)e^xcos2x + (2/5)e^xsin2x + C
代回到原积分得:
∫ e^xsin²x dx
=(1/2)e^x - (1/2)∫ e^xcos2x dx
,6,
=(1/2)∫ e^x(1-cos2x) dx
=(1/2)∫ e^x dx - (1/2)∫ e^xcos2x dx
=(1/2)e^x - (1/2)∫ e^xcos2x dx
下面单独计算 ∫ e^xcos2x dx =∫ cos2x de^x
分部积分
=e^xcos2x + 2∫ e^xsin2xdx
=e^xcos2x + 2∫ sin2xde^x
再分部
=e^xcos2x + 2e^xsin2x - 4∫ e^xcos2x dx
将-4∫ e^xcos2x dx
移到左边与左边合并后除以系数
∫ e^xcos2x dx
=(1/5)e^xcos2x + (2/5)e^xsin2x + C
代回到原积分得:
∫ e^xsin²x dx
=(1/2)e^x - (1/2)∫ e^xcos2x dx
,6,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询