有没有五年级奥数题,要难一点的
提示该问答中所提及的号码未经验证,请注意甄别。
8个回答
展开全部
小学五年级奥数题——速算与巧算
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5
解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5
=10+30+170+4000-(0.004+0.02+0.1+0.5)
=4210-0.624
=4209.376
例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)
=0.04×25
=1
如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)
=1
例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2
=4.5+1.65
=6.15
例4:计算:9.9×9.9+1.99
解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。
9.9×9.9+1.99
=99×0.99+0.99+1
=(99+1)×0.99+1
=100
例5:计算:2.437×36.54+243.7×0.6346
解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。
2.437×36.54+243.7×0.6346
=2.437×36.54+2.437×63.46
=2.437×(36.54+63.46)
=243.7
*例6:计算:1.1×1.2×1.3×1.4×1.5
解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。
平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。
1.1×1.2×1.3×1.4×1.5
=1.1×1.3×0.7×2×1.2×1.5
=1.001×3.6
=3.6036
计算下列各题并写出简算过程:
1.5.467+3.814+7.533+4.186
2.6.25×1.25×6.4
3.3.997+19.96+1.9998+199.7
4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99
5.199.9×19.98-199.8×19.97
6.23.75×3.987+6.013×92.07+6.832×39.87
*7.20042005×20052004-20042004×20052005
*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
计算下列各题并写出简算过程:
1.6.734-1.536+3.266-4.464
2.0.8÷0.125
3.89.1+90.3+88.6+92.1+88.9+90.8
4.4.83×0.59+0.41×1.59-0.324×5.9
5.37.5×21.5×0.112+35.5×12.5×0.112
五年级下册数奥试题
姓名 班级 得分
用简便方法计算下面各题。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023
9.56×4.18-7.34×4.18-0.26×4.18
1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。又知总的组数在15组左右。那么,12人的多少组?7人的有多少组?
2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?
3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。问父亲现年多少岁?
4、加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?
5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
6、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?
7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重多少千克?
8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。那么买一个足球、一个篮球各付多少元?
9、有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?
10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。如果上下山速度不变,从B村沿原路返回A村,要用多少时间?
11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。AB两地相距多少千米?
12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。问兔子还需要多少长时间才能追上乌龟?
13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。两人跑一圈各要几分钟?
14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?
15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?
16、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?
17、有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各
包含与排除
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
解:两个小组共有(15+18)-10=23(人),
都不参加的有40-23=17(人)
答:有17人两个小组都不参加。
--
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
解:45-29-10+3=9(人)
答:语文成绩得满分的有9人。
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)
答:现在面向老师的同学还有38名。
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游艺会为该项活动准备的奖品铅笔共有232支。
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个
4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段
答:绳子共被剪成了90段。
6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25
所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)
答:其他年级的画共有3幅。
---
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?
解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)
答:这些卡片一共有36张。
--
--
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
---
9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。
解:25+35+27-(8+12+9)+4=62(人)
答:这个班的学生人数是62人。
-- --
10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。
解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2
阴影部分面积=73-(6+8+5)+2*2=58
答:阴影部分的面积是58。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:02
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:43
--
12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。
三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)
答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:46:53
--
13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?
解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点
答:在这个五角星上红色点最少有9960个。
此主题相关图片如下:
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:47:12
--
14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)
答:3人都浇过的花最少有4盆。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:52:54
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:53:43
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:53:23
--
以下是引用abc在2004-12-12 15:42:17的发言:
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
题中的除尽应该是整除吧.
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:56:00
--
以下是引用abc在2004-12-12 15:45:02的发言:
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》
或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16……4
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。
某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?
分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.
由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我们考察如何求y的最大值与最小值。
由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。
当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。
答:这个班最多有46人,最少有39人。
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
1.解:设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张。
4.解:货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆。
5.解:天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题。
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5
解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5
=10+30+170+4000-(0.004+0.02+0.1+0.5)
=4210-0.624
=4209.376
例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)
=0.04×25
=1
如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)
=1
例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2
=4.5+1.65
=6.15
例4:计算:9.9×9.9+1.99
解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。
9.9×9.9+1.99
=99×0.99+0.99+1
=(99+1)×0.99+1
=100
例5:计算:2.437×36.54+243.7×0.6346
解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。
2.437×36.54+243.7×0.6346
=2.437×36.54+2.437×63.46
=2.437×(36.54+63.46)
=243.7
*例6:计算:1.1×1.2×1.3×1.4×1.5
解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。
平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。
1.1×1.2×1.3×1.4×1.5
=1.1×1.3×0.7×2×1.2×1.5
=1.001×3.6
=3.6036
计算下列各题并写出简算过程:
1.5.467+3.814+7.533+4.186
2.6.25×1.25×6.4
3.3.997+19.96+1.9998+199.7
4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99
5.199.9×19.98-199.8×19.97
6.23.75×3.987+6.013×92.07+6.832×39.87
*7.20042005×20052004-20042004×20052005
*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
计算下列各题并写出简算过程:
1.6.734-1.536+3.266-4.464
2.0.8÷0.125
3.89.1+90.3+88.6+92.1+88.9+90.8
4.4.83×0.59+0.41×1.59-0.324×5.9
5.37.5×21.5×0.112+35.5×12.5×0.112
五年级下册数奥试题
姓名 班级 得分
用简便方法计算下面各题。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023
9.56×4.18-7.34×4.18-0.26×4.18
1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。又知总的组数在15组左右。那么,12人的多少组?7人的有多少组?
2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?
3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。问父亲现年多少岁?
4、加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?
5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
6、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?
7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重多少千克?
8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。那么买一个足球、一个篮球各付多少元?
9、有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?
10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。如果上下山速度不变,从B村沿原路返回A村,要用多少时间?
11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。AB两地相距多少千米?
12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。问兔子还需要多少长时间才能追上乌龟?
13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。两人跑一圈各要几分钟?
14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?
15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?
16、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?
17、有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各
包含与排除
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
解:两个小组共有(15+18)-10=23(人),
都不参加的有40-23=17(人)
答:有17人两个小组都不参加。
--
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
解:45-29-10+3=9(人)
答:语文成绩得满分的有9人。
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)
答:现在面向老师的同学还有38名。
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游艺会为该项活动准备的奖品铅笔共有232支。
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个
4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段
答:绳子共被剪成了90段。
6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25
所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)
答:其他年级的画共有3幅。
---
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?
解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)
答:这些卡片一共有36张。
--
--
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
---
9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。
解:25+35+27-(8+12+9)+4=62(人)
答:这个班的学生人数是62人。
-- --
10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。
解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2
阴影部分面积=73-(6+8+5)+2*2=58
答:阴影部分的面积是58。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:02
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:43
--
12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。
三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)
答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:46:53
--
13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?
解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点
答:在这个五角星上红色点最少有9960个。
此主题相关图片如下:
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:47:12
--
14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)
答:3人都浇过的花最少有4盆。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:52:54
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:53:43
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:53:23
--
以下是引用abc在2004-12-12 15:42:17的发言:
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
题中的除尽应该是整除吧.
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:56:00
--
以下是引用abc在2004-12-12 15:45:02的发言:
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》
或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16……4
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。
某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?
分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.
由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我们考察如何求y的最大值与最小值。
由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。
当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。
答:这个班最多有46人,最少有39人。
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
1.解:设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张。
4.解:货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆。
5.解:天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题。
展开全部
.xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?
因为个位是9,所以个位相加没有进位个位
即:个位数的和Y+W=9,而不会是19,29,39....
所以十位数的和X+Z=13
于是:x+y+z+w=22
2.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上.以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
反向,二人的速度和是:500/1=500
同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分
乙的速度是:(500-50)/2=225米/分
3一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇.问:小明环行一周要多少分钟?
由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。
所以小强的速度是:(1/12)/(1+1。5)=1/30
即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分。
4.a、b和c都是两位的自然数,a、b的个位数分别是7和5,c的十位数是1.如果满足等式ab+c=2005,则a+b+c=?
首先我们可以通过B的个位为5来判断C的个位应该为0
这样可以知道C的个位与十位是10
则AB应该为2005-10=1995,
相乘得1995的两位数中,只有57与35的个位数分别为7和5,因此判定
a+b+c=57+35+10=102
5——11题
1、22……2[2000个2]除以13所得的余数是多少?
2、1的平方+2的平方+3的平方……+2001的平方+2002的平方除以4的余数是多少?
3、数1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是多少?
4、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
5、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
6、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
1、222222可以整除13,所以2000个2的话包含333组循环,剩下最后的22,所以余数是9
2、因为每偶数项都能整除4,所以只剩下奇数项,我们能知道:1的平方+3的平方+5的平方+7的平方刚好也能被4整除,同样11的平方+13的平方+15的平方+17的平方他们也能被四整除,最后只剩下250个9的平方+2001的平方,所以最后只剩下250+1=251,所以余数为3
3、1998除以7余数是3,所以我们可以把1998=7*n+3
总共有2000个1998=7*n+3,所以最后就是2000个3相乘,即为3^2000=9^1000=(7+2)^1000,所以又变成求2^1000除以7的余数了,2^1000=1024^100=(146*7+2)^100,变成了2^100除以7的余数了,同理,最后变成1024除以7的余数了,也就是2,所以1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是2.
4、设为84a+46,则84a能被3,4,7整除,答案即为46除以3、4、7所得的三个余数之和1+2+4=7
5、此题目的意思为,69=n1*A+a、85=n2*A+a、93=n3*A+a
16=(n2-n1)*A 8=(n3-n2)*A 24=(n3-n1)*A
所以我们可以知道A=8或者4,或者2,若为8则,丁所剩的人数为1,若A为4,余数为:1,所以不管A为8,还是4,还是2,余数都是1.
6、因为37号的各位和十位的和为10,57的为12,77的为14,97的为16,所以我么知道10+12除以3余数为1,10+14除以3余数为0,10+16的余数为2,12+14的余数为2,12+16的余数为1,14+16的余数为0,所以我们知道,37号要打3场,57要打4场,77要打2场,97要打3场,所以最多的是57号
12——16T
1.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
2.一批货物,A、B两辆汽车合运6天能运完这批货物的5/6,若单独运,A运完1/3,B运完1/2。若单独运,A、B各需要多少天?
3.有一些机器零件,甲单独完成需要17天,比乙单独完成多用了1天。两人合作8天后,剩下420个零件由甲单独制作,甲共制作了多少个零件?甲共干了几天?
4.水池上装有甲、乙两个水管,齐开两水管12小时注满水池。若甲管开5小时,乙管开6小时,只能注水池的9/20。若单独开甲管和乙管各需要几小时注满?
1.甲单独打需要28天,所以甲每天可以完成任务的1/28,甲乙合打十天完成,所以甲乙合打每天可以完成任务的1/10,所以乙每天可以完成任务的1/10-1/28=9/140,两人合打8天后还剩下任务的1/5,所以乙又干了1/5除以9/140=28/9天
2.两辆汽车合运6天完成5/6,所以合运一天可以完成5/36,A运完1/3的时候B可以运完1/2,所以B的速度是A的1.5倍,所以A每天可以运完这批货物的2/36,B可以运完3/36,所以A单独运需要18天,B单独运需要12天。
3.甲每天能完成1/17,乙每天能完成1/16,合干8天共完成33/34,剩下1/34为420个,所以这些零件一共有420*34=14280个,甲共制作了14280*8/17+420=7140个,一共干了1/34除以1/17+8=8.5天,所以甲一共干了8天半
4.甲乙齐开12小时注满,所以甲乙齐开每小时注入1/12,设甲每小时注入为X,乙为Y,5X+6Y=9/20,上式合并为5(x+y)+y=9/20,x+y是甲乙齐开的效率,就是1/12,带入式子得y=1/30,所以x=1/12-1/30=1/20,所以单开甲20小时注满,单开乙30小时注满
17.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米? (列算式并算出答案(可写综合算式)
300/(5-4.4)=500秒
500*4.4=2200米
2200除以300等于7圈余100
所以两人起跑后的第一次相遇在起跑线前100米
18——20
1.小红从张村到李村,如果每小时走15千米,就可以比原计划早到24分钟,如果每小时走12千米,就会比原计划晚到15分钟,张村到李村的路程是多少?
设原来从张村到李庄需X小时
24分=0.4时 15分=0.25时
由于路程一定,速度和时间成反比例
15×(X-0.4)=12×(X+0.25)
X=3
张庄到李庄的路程是:15×(3-0.4)=39(千米)
因为个位是9,所以个位相加没有进位个位
即:个位数的和Y+W=9,而不会是19,29,39....
所以十位数的和X+Z=13
于是:x+y+z+w=22
2.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上.以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
反向,二人的速度和是:500/1=500
同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分
乙的速度是:(500-50)/2=225米/分
3一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇.问:小明环行一周要多少分钟?
由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。
所以小强的速度是:(1/12)/(1+1。5)=1/30
即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分。
4.a、b和c都是两位的自然数,a、b的个位数分别是7和5,c的十位数是1.如果满足等式ab+c=2005,则a+b+c=?
首先我们可以通过B的个位为5来判断C的个位应该为0
这样可以知道C的个位与十位是10
则AB应该为2005-10=1995,
相乘得1995的两位数中,只有57与35的个位数分别为7和5,因此判定
a+b+c=57+35+10=102
5——11题
1、22……2[2000个2]除以13所得的余数是多少?
2、1的平方+2的平方+3的平方……+2001的平方+2002的平方除以4的余数是多少?
3、数1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是多少?
4、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
5、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
6、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
1、222222可以整除13,所以2000个2的话包含333组循环,剩下最后的22,所以余数是9
2、因为每偶数项都能整除4,所以只剩下奇数项,我们能知道:1的平方+3的平方+5的平方+7的平方刚好也能被4整除,同样11的平方+13的平方+15的平方+17的平方他们也能被四整除,最后只剩下250个9的平方+2001的平方,所以最后只剩下250+1=251,所以余数为3
3、1998除以7余数是3,所以我们可以把1998=7*n+3
总共有2000个1998=7*n+3,所以最后就是2000个3相乘,即为3^2000=9^1000=(7+2)^1000,所以又变成求2^1000除以7的余数了,2^1000=1024^100=(146*7+2)^100,变成了2^100除以7的余数了,同理,最后变成1024除以7的余数了,也就是2,所以1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是2.
4、设为84a+46,则84a能被3,4,7整除,答案即为46除以3、4、7所得的三个余数之和1+2+4=7
5、此题目的意思为,69=n1*A+a、85=n2*A+a、93=n3*A+a
16=(n2-n1)*A 8=(n3-n2)*A 24=(n3-n1)*A
所以我们可以知道A=8或者4,或者2,若为8则,丁所剩的人数为1,若A为4,余数为:1,所以不管A为8,还是4,还是2,余数都是1.
6、因为37号的各位和十位的和为10,57的为12,77的为14,97的为16,所以我么知道10+12除以3余数为1,10+14除以3余数为0,10+16的余数为2,12+14的余数为2,12+16的余数为1,14+16的余数为0,所以我们知道,37号要打3场,57要打4场,77要打2场,97要打3场,所以最多的是57号
12——16T
1.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
2.一批货物,A、B两辆汽车合运6天能运完这批货物的5/6,若单独运,A运完1/3,B运完1/2。若单独运,A、B各需要多少天?
3.有一些机器零件,甲单独完成需要17天,比乙单独完成多用了1天。两人合作8天后,剩下420个零件由甲单独制作,甲共制作了多少个零件?甲共干了几天?
4.水池上装有甲、乙两个水管,齐开两水管12小时注满水池。若甲管开5小时,乙管开6小时,只能注水池的9/20。若单独开甲管和乙管各需要几小时注满?
1.甲单独打需要28天,所以甲每天可以完成任务的1/28,甲乙合打十天完成,所以甲乙合打每天可以完成任务的1/10,所以乙每天可以完成任务的1/10-1/28=9/140,两人合打8天后还剩下任务的1/5,所以乙又干了1/5除以9/140=28/9天
2.两辆汽车合运6天完成5/6,所以合运一天可以完成5/36,A运完1/3的时候B可以运完1/2,所以B的速度是A的1.5倍,所以A每天可以运完这批货物的2/36,B可以运完3/36,所以A单独运需要18天,B单独运需要12天。
3.甲每天能完成1/17,乙每天能完成1/16,合干8天共完成33/34,剩下1/34为420个,所以这些零件一共有420*34=14280个,甲共制作了14280*8/17+420=7140个,一共干了1/34除以1/17+8=8.5天,所以甲一共干了8天半
4.甲乙齐开12小时注满,所以甲乙齐开每小时注入1/12,设甲每小时注入为X,乙为Y,5X+6Y=9/20,上式合并为5(x+y)+y=9/20,x+y是甲乙齐开的效率,就是1/12,带入式子得y=1/30,所以x=1/12-1/30=1/20,所以单开甲20小时注满,单开乙30小时注满
17.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米? (列算式并算出答案(可写综合算式)
300/(5-4.4)=500秒
500*4.4=2200米
2200除以300等于7圈余100
所以两人起跑后的第一次相遇在起跑线前100米
18——20
1.小红从张村到李村,如果每小时走15千米,就可以比原计划早到24分钟,如果每小时走12千米,就会比原计划晚到15分钟,张村到李村的路程是多少?
设原来从张村到李庄需X小时
24分=0.4时 15分=0.25时
由于路程一定,速度和时间成反比例
15×(X-0.4)=12×(X+0.25)
X=3
张庄到李庄的路程是:15×(3-0.4)=39(千米)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?
解:1000-1=999
997-995=992
每次减少7,999/7=12……5
所以下面减上面最小是5
1333-1=1332 1332/7=190……2
所以上面减下面最小是2
因此这个差最小是2。
2. 如果四位数6□□8能被73整除,那么商是多少?
解:估计这个商的十位应该是8,看个位可以知道是6
因此这个商是86。
3. 求各位数字都是 7,并能被63整除的最小自然数。
解:63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数)
4. 1×2×3×…×15能否被 9009整除?
解:能。
将9009分解质因数
9009=3*3*7*11*13
5. 能否用1, 2, 3, , 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
解:不能。因为1+2+3++5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。
6. 有一个自然数,它的最小的两个约数之和是,最大的两个约数之和是100,求这个自然数。
解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大
7.100以内约数个数最多的自然数有五个,它们分别是几?
解:如果恰有一个质因数,那么约数最多的是26=6,有7个约数;
如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=8和2×32×5=90,各有12个约数。
所以100以内约数最多的自然数是60,72,8,90和96。
8. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
解:6,10,15
9. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
解:2份;每份有苹果8个,桔子6个,梨5个。
10. 三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。
解:1000-1=999
997-995=992
每次减少7,999/7=12……5
所以下面减上面最小是5
1333-1=1332 1332/7=190……2
所以上面减下面最小是2
因此这个差最小是2。
2. 如果四位数6□□8能被73整除,那么商是多少?
解:估计这个商的十位应该是8,看个位可以知道是6
因此这个商是86。
3. 求各位数字都是 7,并能被63整除的最小自然数。
解:63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数)
4. 1×2×3×…×15能否被 9009整除?
解:能。
将9009分解质因数
9009=3*3*7*11*13
5. 能否用1, 2, 3, , 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
解:不能。因为1+2+3++5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。
6. 有一个自然数,它的最小的两个约数之和是,最大的两个约数之和是100,求这个自然数。
解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大
7.100以内约数个数最多的自然数有五个,它们分别是几?
解:如果恰有一个质因数,那么约数最多的是26=6,有7个约数;
如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=8和2×32×5=90,各有12个约数。
所以100以内约数最多的自然数是60,72,8,90和96。
8. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
解:6,10,15
9. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
解:2份;每份有苹果8个,桔子6个,梨5个。
10. 三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是一道追及问题:
某部行军,队伍以每小时6千米的速度前进,排尾的通信员以每小时7.5千米的平均速度跑到排头传达命令后,又以同样的速度跑回排尾。当通讯员跑回排尾时,此时队伍前进了0.4千米,求通讯员从排尾追上排头走了多少千米?
1.队伍前进了0.4千米,可以得到时间t=0.4/6=1/15小时,即4分钟
2.此人从排尾到排头再回到排尾的时间就是4分钟
3.通讯员相对队伍的速度,从排尾到排头是7.5-6=1.5千米每小时,从排头再回到排尾的速度是7.5+6=13.5千米每小时
4.由3可得,通讯员从排尾到排头的时间与从排头再回到排尾的时间比是速度的反比即是13.5:1.5=9:1
总的时间是4分钟,所以从排尾到排头的时间是3.6分钟,从排头再回到排尾的时间是0.4分钟
5.通讯员从排尾追上排头走了3.6*7.5/60=0.45千米
希望对你有帮助
某部行军,队伍以每小时6千米的速度前进,排尾的通信员以每小时7.5千米的平均速度跑到排头传达命令后,又以同样的速度跑回排尾。当通讯员跑回排尾时,此时队伍前进了0.4千米,求通讯员从排尾追上排头走了多少千米?
1.队伍前进了0.4千米,可以得到时间t=0.4/6=1/15小时,即4分钟
2.此人从排尾到排头再回到排尾的时间就是4分钟
3.通讯员相对队伍的速度,从排尾到排头是7.5-6=1.5千米每小时,从排头再回到排尾的速度是7.5+6=13.5千米每小时
4.由3可得,通讯员从排尾到排头的时间与从排头再回到排尾的时间比是速度的反比即是13.5:1.5=9:1
总的时间是4分钟,所以从排尾到排头的时间是3.6分钟,从排头再回到排尾的时间是0.4分钟
5.通讯员从排尾追上排头走了3.6*7.5/60=0.45千米
希望对你有帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有四只猴子摘了桃子。第一只猴子来分桃子,把桃子平均分了4堆,发现多了三个,就把那三个加在其中三堆上,拿了最少的一对走了。第二只猴子来了,拿了一堆桃子,把那对桃子平均又分了四堆,发现还是多了三个,就又把那三个加给了其中三堆。后来两只猴也发生了这样的事。如果第四只拿了1个桃子,那这堆桃子至少有几个?
这道题要反向思考,从最后一只猴开始。
算式是:倒数第一只猴子:1 2 2 2,他拿走了1个。
倒数第二只猴子来了:6 7 7 7 ,他拿走了6个。
倒数第三只猴子:21 22 22 22 ,他拿了21个。
倒数第四只猴子:66 67 67 67,他拿了66个。
66+(67成3)=267(个)
偶是一笔一划打的,望采纳!
这道题要反向思考,从最后一只猴开始。
算式是:倒数第一只猴子:1 2 2 2,他拿走了1个。
倒数第二只猴子来了:6 7 7 7 ,他拿走了6个。
倒数第三只猴子:21 22 22 22 ,他拿了21个。
倒数第四只猴子:66 67 67 67,他拿了66个。
66+(67成3)=267(个)
偶是一笔一划打的,望采纳!
参考资料: 自己哦,刚刚去青少年宫考过奥术,记下来的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询