求∫1/(1+x的平方)的平方dx的不定积分具体点啊谢谢!
1个回答
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
具体解题如图:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;闷瞎凳若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃蚂旅、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
1、常用的积分公式:
(1)∫0dx=c
(2)∫x^udx=(x^(u+1))/(u+1)+c
(3)∫1/xdx=ln|x|+c
(4)∫a^xdx=(a^x)/lna+c
(5)∫e^xdx=e^x+c
(6)∫sinxdx=-cosx+c
2、一般定理
(1)设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
(2)设f(x)区间[a,b]上有神早界,且只有有限个间断点,则f(x)在[a,b]上可积。
(3)设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询